Velocity and Dispersion of Heavy Oils

De-hua Han and Jiajin Liu, Rock Physics Lab, University of Houston; Micheal Batzle, Colorado School of Mine

Summary

Acoustic properties of heavy oils have been investigated based on laboratory measurement and modeling studies. Based on newly measured shear velocity data in extended low temperature, we have revealed a full spectrum of shear velocity of heavy oils as function of temperature, which we have applied to calibrate viscosity of heavy oils. A series of models has been developed to describe both S- and Pwave velocities of heavy oils as function of temperature and frequencies

Introduction

Acoustic properties of heavy oil are vital to understand seismic characterization and monitoring in heavy oil reservoirs. However, heavy oil properties have showed complicity deviated from conventional black oils because high viscosity at reservoirs. As viscous fluids, heavy oils have no sharp phase transition from a liquid to solid as that of crystal solid, such as the freeze (or melt) point between water and ice. As shown in Figure 1 (Han et. Al., 2006), heavy oils have three phases: liquid, quasi-solid and glass solid and characterized by the liquid point and the glass point in temperature.

Acoustic velocities have shown different features at different phases. At high temperature (> the liquid point), velocities of heavy oil in the liquid phase are similar as conventional oil: there is ignorable shear velocity; there is ignorable velocity dispersion; there are near constant velocity gradient with respect to temperature. At very low temperature, heavy oils are in the glass solid phase, in which both Vp and Vs should behave elastically: there is no more dispersion. In the between the liquid and glass point, heavy oils in the quasi-solid phase are very different in velocities: there is shear velocity; there is velocity dispersion; velocities show transition from the liquid to solid phase. The liquid point, derived from ultrasonic velocities will change with frequency and viscosity. We have found (Han, et. al., 2006) that measured ultrasonic Pwave velocities have offered a reasonable definition of the liquid point in oil viscosity: around 800 cp, which provide a low threshold of the liquid phase. With lower frequencies, viscosity of the liquid point can be high.

Velocity dispersion

To understand acoustic properties in heavy oils in quasisolid phase, we can write shear velocity as

$$Vs = Vs(\omega, \tau(\eta))$$
(1)

and

$$\eta = \eta(\text{API}, T) \tag{2}$$

where ω is angle frequency, τ is relaxation time, which is a function of viscosity η . Viscosity depends on oil gravity

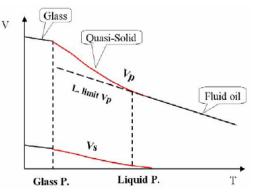


Fig. 1 Velocities of heavy oil in phase transition

(API) and temperature (T). There are two problems. First, direct velocity measurement with wide band frequency at laboratory conditions is very difficult if it is not impossible. We have found that ω and τ (η) are symmetric distributed in equation 1. Ideally, we can measure velocity as function of viscosity to calibrate the frequency effect. However, there are no proper viscosity model for heavy oils because complicated composition. Direct measurement of viscosity on heavy oils as function of temperature (equation 2) is equally difficult. Therefore, we decided to measure ultrasonic shear velocity as function of temperature and use Vs characterization at the liquid point (~800 cp) and the glass point (10¹⁵ cp) to calibrate viscosity model (equation 4).

$$V_{S} = V_{S}(T) \tag{3}$$

and

$$\eta = \eta \left(Vs \left(T \right) \right) \tag{4}$$

Based on measured shear velocity and derived viscosity model, we have developed velocity model as function of frequency (equation 1). In this abstract, we show measured data and model results.

Shear velocity of heavy oils

We have measured shear wave velocities of heavy oil: first with reflection methods (Han et al., 2005), and recently with transmission method to cover wide range of temperatures as shown in figure 2. The S-wave velocity increases gradually with decreasing temperature. It is interesting that velocity did not tend to be a constant at the temperature below the glass point, instead to continue increase. It shows a glass point may not be a correct threshold for phase transition, but just an assumed point for a solid phase. Heavy oil can continue consolidation, viscosity can continue to increase, and shear velocity (dynamic rigidity) can continue increase with decreasing temperature below the glass point.

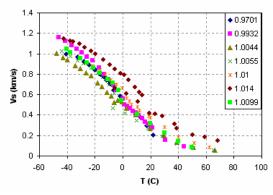


Fig. 2. Measured Vs as function of temperature.

Shear velocity model

We have designed a model with a symmetric term and a linear term:

$$Vs = a \left[1 + \frac{e^{-c(T-T_0)} - e^{c(T-T_0)}}{e^{-c(T-T_0)} + e^{c(T-T_0)}} \right] + s \left[(T-T_0) - ABS(T-T_0) \right]$$
(5)

to describe the S-wave velocity behavior in quasi-solid and liquid phases. It is featured with a linear term to describe the velocity change in solid phase. In this equation, T is an independent variable and there are 4 parameters to describe shear velocity behavior as a function of temperature T: T_0 is the center temperature for the center of symmetry term; c is a parameter to describe the slop of the curve; a is the Vs value at the center temperature T_0 ; and s is the slop of the linear part of the model. ABS is the function of taking absolute value. The figure 2 shows the model and data (green triangles), the blue curve is the first term, the gray line is the linear part and the orange curve is total curve for Vs. It can be seen that the linear part equals to zero when

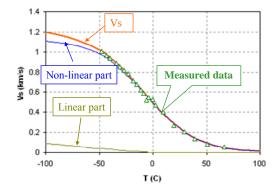


Fig. 3. Vs model vs. temperature (API = 9.38)

the temperature is higher than T_0 . The parameters a, c, s and T_0 are obtained with least square regression for all the data point and shown in figure 3.

Frequency model for shear velocity of heavy oils

We have selected non-symmetric Havriliak-Negami (HN) model (1967) to fit measured data.

$$G(\omega\tau) = G'(\omega\tau) + iG''(\omega\tau)$$

$$= 1 - \frac{1}{\left[1 + (i\omega\tau)^{1-\alpha}\right]^{\gamma}}$$

$$G'(\omega\tau) = 1 - R^{-\frac{\gamma}{2}} \cos(\theta\gamma);$$

$$G''(\omega\tau) = R^{-\frac{\gamma}{2}} \sin(\theta\gamma)$$

$$R = \left[1 + (\omega\tau)^{1-\alpha} \sin(\frac{\pi\alpha}{2})\right]^{2} + \left[(\omega\tau)^{1-\alpha} \cos(\frac{\pi\alpha}{2})\right]^{2}$$

$$\theta = \arctan\left[\frac{(\omega\tau)^{1-\alpha} \cos(\frac{\pi\alpha}{2})}{1 + (\omega\tau)^{1-\alpha} \sin(\frac{\pi\alpha}{2})}\right]$$
(6)

In the frequency models the normalized shear modulus G with real and imagery parts G' and G" is a function of $\omega \tau$, which is a dimensionless parameter. Therefore, the effect of relaxation time τ and ω on shear modulus is equivalent. We have measured S-wave velocity in temperature domain, which provides two calibration points for viscosity (10¹⁵ cp at the glass point and near 10³ cp at the liquid point). In the figure 4, the S-wave velocity data have been converted into $\omega \tau$ domain and modeled with the HN model with the optimum parameters $\alpha = 0.61$ and $\gamma = 0.31$ respectively.

With the HN model we can estimate dispersion of Swave velocity. The figure 4 (a) and (b) is an example for a heavy oil sample with API = 9.38. The S-wave velocity of the oil at quasi-solid phase (~ 0 °C) decreases with decreasing frequency significantly, but much less at near glass solid phase and liquid phase.

We have built a model for estimating P-wave velocity based on S-wave velocity model as shown in the equation (7).

$$Vp = \sqrt{V_{k1}^2 + \left(\frac{Vs}{0.5468}\right)^{1/0.6553}}$$
(7)

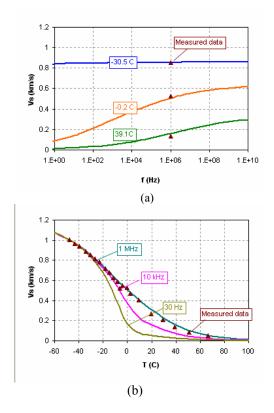
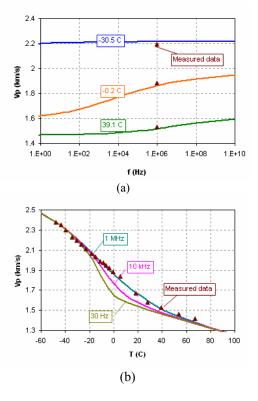


Fig. 4. HN model for S-wave velocity applied on a heavy oil with API = 9.38.

- (a) S-wave velocities as the function of frequency in different temperatures;
- (b) S-wave velocities as the function of temperature in different frequencies.

where V_{K1} is a part of P-wave velocity that has linear relation with temperature and has no relation with the viscosity.


The figure 5 shows the P-wave velocities in frequency domain and temperature domain of the same sample of figure 4 (API = 9.38). The P-wave velocity is dispersive (>15%) at quasi-solid phase (around 0 °C) as shown in Figure 5 (a) and (b).

Conclusions

Measured shear velocity as a function of temperature has been used to calibrate viscosity of heavy oil in a quasi-solid phase. We apply calibrated viscosity and measure ultrasonic shear velocity data to model shear velocity as a function of frequency for heavy oil. Currently, the Havriliak-Negami (NH) model (1967) is the best to fit heavy oil data and predict S- and P-wave velocity dispersion.

Acknowledgements

Thank to our supporters of the Fluids/DHI consortium.

- Fig. 5. Estimated P velocity vs. frequency for a heavy oil with API = 9.38.
- (a) P-wave velocities as the function of frequency in different temperatures;
- (b) P-wave velocities as the function of temperature in different frequencies.

References

Han, D., Liu, J., and M. Batzle, 2005, Measurement of shear wave velocity of heavy oil, SEG 2005 annual meeting 1514-1517.

Han, D., Liu, J., and Batzle, M., 2006, Acoustic property of heavy oil: measured data, SEG 2006 annual meeting.

Han, D., Liu, J. and Batzel, M., 2007, Shear velocity as the function of frequency in heavy oils, SEG 2007 annual meeting.

Haviliak, S. and Negami, S., 1967, A complex plane representation of dielectric and mechanical relaxation processes in some polymers, Vol. 8, 161-210.

EDITED REFERENCES

Note: This reference list is a copy-edited version of the reference list submitted by the author. Reference lists for the 2008 SEG Technical Program Expanded Abstracts have been copy edited so that references provided with the online metadata for each paper will achieve a high degree of linking to cited sources that appear on the Web.

REFERENCES

- Han, D., J. Liu, and M. Batzle, 2005, Measurement of shear wave velocity of heavy oil: 75th Annual International Meeting, SEG, Expanded Abstracts, 1514–1517.
- ——2007, Shear velocity as the function of frequency in heavy oils: Presented at the 77th Annual International Meeting, SEG. Haviliak, S., and S. Negami, 1967, A complex plane representation of dielectric and mechanical relaxation processes in some

polymers: 8, 161–210.