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ABSTRACT
Based on the theory of anisotropic elasticity and observation of static mechanic mea-
surement of transversely isotropic hydrocarbon source rocks or rock-like materials,
we reasoned that one of the three principal Poisson’s ratios of transversely isotropic
hydrocarbon source rocks should always be greater than the other two and they
should be generally positive. From these relations, we derived tight physical con-
straints on c13, Thomsen parameter δ, and anellipticity parameter η. Some of the
published data from laboratory velocity anisotropy measurement are lying outside of
the constraints. We analysed that they are primarily caused by substantial uncertainty
associated with the oblique velocity measurement. These physical constraints will be
useful for our understanding of Thomsen parameter δ, data quality checking, and
predicting δ from measurements perpendicular and parallel to the symmetrical axis
of transversely isotropic medium. The physical constraints should also have potential
application in anisotropic seismic data processing.

Key words: Anisotropy, velocity measurement, Poisson’s ratios, Elastic constants,
Thomsen parameters δ.

INTRODUCTION

Thomsen (1986) defined a set of parameters (ε, γ , and δ) and
brought up weak anisotropy approximations for the phase ve-
locities in a transversely isotropic (TI) medium. These param-
eters and the linearized approximation are widely accepted
and used in the industry. With increasing importance of or-
ganic shale as a reservoir rock, laboratory velocity anisotropy
measurements on shales are done routinely. The results are
usually reported in terms of Thomsen parameters (Vernik and
Nur 1992; Johnston and Christensen 1995; Vernik and Liu
1997; Jakobsen and Johansen 2000; Sondergeld et al. 2000;
Wang 2002a, 2002b; Sondergeld and Rai 2011; Sone 2012).
Of the three parameters, δ is one of the most important pa-
rameters for exploration geophysicists since it describes the re-
lation between the normal moveout velocity and the vertical
velocity (Thomsen 1986; Tsvankin 2012). Thomsen (1986)
pointed out that δ is an “awkward” combination of elastic
parameters and its physical meaning is not straightforward.
In spite of a large amount of laboratory measurement, our

understanding of parameter δ is still not quite clear (Banik
1987; Sayers 2004). The laboratory measurement found that
δ has very poor correlation with other Thomsen parameters,
and even the rational data range of δ is not certain.

Of the five independent elastic constants (c11, c33, c44, c66,
and c13) of a TI medium, although theoretically they are free
independent variables, good to excellent mutual correlations
are found existing between c11 and c66 and between c33 and c44

from laboratory velocity anisotropy measurements on hydro-
carbon source rocks samples. Nevertheless, the behaviour of
c13 is erratic. The correlations between c13 and the other elastic
constants are usually very poor. This might be because esti-
mation of c13 from oblique velocity measurement introduces
extra uncertainties compared with traditional ultrasonic mea-
surement. We believe that, for TI hydrocarbon source rocks,
there should exist some forms of constraints on c13 if the elas-
tic properties in directions perpendicular and parallel to the
symmetry axis are known. If we know the behaviour of c13,
then we can constrain Thomsen parameter δ.
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Figure 1 Network structure of a material with negative Poisson’s ratio
(after Lakes (1991) and Dmitriev, Shigenari, and Abe (2001)). Grey
dashed lines and circles represent the deformed network under axial
compression.

THEORY

Young’s modulus (E) and Poisson’s ratio (ν) are basic parame-
ters to describe the mechanical properties of materials. For the
isotropic medium, from the definitions and using Hooke’s law,
they are related to the elastic constants as follows (Mavko,
Mukerji, and Dvorkin 1998):

E = 9Kμ

3K + μ
, ν = 3K − 2μ

2(3K + μ)
= 3λ

2(3K + μ)
. (1)

where K is the bulk modulus, μ is the shear modulus, and λ

is the Lamé parameter. The theoretical value of ν lies between
[-1, 0.5] (Landau and Lifshitz 1970; Thomsen 1990; Carcione
and Cavallini 2002). The Poisson’s ratio of common natural
material is positive. Materials of negative materials were be-
lieved to be non-existing (Landau and Lifshitz 1970), but they
do exist. Materials of negative Poisson’s ratio are called “aux-
etic” materials and have important applications nowadays
(Evans et al. 1991; Greaves et al. 2011). Most of the auxetic
materials are synthetic and have special network structures.
Figure 1 shows one of the deformation mechanisms leading
to negative Poisson’s ratio. This kind of network structure
is rarely found in natural rocks. For natural isotropic rock,
practical limits of Poisson’s ratios are given as 0 at the low
side and is theoretically by 0.5 at the high side(Gercek 2007).

The concepts of Young’s modulus and Poisson’s ratio can
be straightforwardly extended to TI medium using Hooke’s
law (King 1964; Banik 2012). Their relations with the elastic
constants are as follows:

EV = c33(c11 − c66) − c2
13

c11 − c66
, (= E3), (2)

Figure 2 The right-hand coordinate system used for notation in this
study.

EH = 4c66(c33(c11 − c66) − c2
13)

c11c33 − c2
13

, (= E1 = E2), (3)

νV = c13

2(c11 − c66)
, (= ν31 = ν32), (4)

νHV = 2c13c66

c11c33 − c2
13

, (= ν13 = ν23), (5)

νHH = c33(c11 − 2c66) − c2
13

c11c33 − c2
13

, (= ν12 = ν21), (6)

The coordinate system used for the notation is shown in
Fig. 2.

An important relation exists between νV and νHV :

νHV

νV
= EH

EV
. (7)

For hydrocarbon source rock with TI anisotropy, the
Young’s modulus in the horizontal direction (parallel to the
bedding direction) should always be greater than that along
the TI symmetry axis (EH > EV) so that νHV > νV.

PHYSICAL CONSTRAINTS ON c13 AND δ

Figure 3 shows the schematic views of the deformation of
a vertical plug and a horizontal plug of organic shale under
axial compression test. From the left panel, the transversal
deformation is identical in every direction, and there is only
one Poisson’s ratio (νV). It is physically intuitional that the
plug will not shrink transversely under axial compression,
and νV is positive. From equation (4) and c11 > c66 for a TI
medium (Dellinger 1991), we get

c13 > 0. (8)

In the right panel of Fig. 3, when a horizontal plug is un-
der uniform axial compression, the deformation in transversal
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Figure 3 Schema of deformation of verti-
cal plug (left) and horizontal plug (right)
of organic shale under axial compres-
sional testing. Dark grey represents plugs
before deformation, and light grey repre-
sents plugs after deformation.

directions will not be uniform. There are two principal Pois-
son’s ratios: νHH and νHV . Since hydrocarbon source rocks are
usually stiffer in the horizontal direction (along the bedding)
than in the vertical direction (perpendicular to the bedding)
(EH > EV), when under axial compression, the rock is more
resistant to deformation (expansion) in the horizontal direc-
tion than in the vertical direction. Thus we have νHH < νHV.
If there are fractures perpendicular to the bedding, then it may
lead to νHH > νHV . In this case, the effective medium does not
really belong to TI medium. The TI media we considered here
are referred to the clastic sediments with TI anisotropy pri-
marily caused by layering effect and preferred orientation of
minerals and cracks. If a horizontal plug of this type of media
is under uniform axial compression, the passive expansion in
the transverse direction is a matter of more (perpendicular to
the bedding) or less (along the bedding). There is no com-
pression force in transverse directions according to the defi-
nition of Poisson’s ratio. The rock does not have the special
network structure leading to negative Poisson’s ratio. There-
fore, there should be no shrinkage in transverse directions.
From the above analysis, for hydrocarbon source rocks with
TI anisotropy, we have:

0 < νHH < νHV . (9)

This inequality is the fundamental relation to be used for
the derivation of the physical constraints on c13. It is vali-
dated by laboratory static mechanic measurement, as shown
in Fig. 4. There is an obvious pattern of 0 < νHH < νHV . Most
of the samples are from organic shales. Here the Sone’s data
(Sone 2012) are all from static measurement on organic shales.
Each pair of νHH and νHV is measured on a single horizontal

Figure 4 Static mechanic measurement of Poisson’s ratios on organic
shales and rock-like materials with TI anisotropy.

plug. Several samples of synthetic rock-like material with TI
anisotropy are included to demonstrate that νHV can be higher
than the high limit of Poisson’s ratio (0.5) for the isotropic
medium. If a TI medium is infinitely stronger in the hori-
zontal direction compared with the vertical direction, then
νHV → 1. The two data points showing νHH slightly higher
than νHV might be caused by measurement uncertainty, and
it is also possible that the material should not be classified
as a TI medium. We have discussed with Hiroki Sone about
the measurement uncertainty associated with the data point
having higher νHH than νHV in his dataset. This data point is
from Barnett-2 (Sone 2012, 2013). It has a dry bulk density
of 2.65 g/cc and has weak anisotropy. It is the stiffest rock in
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his data set, which means that there might be a bigger error in
estimation of the strains and the Poisson’s ratios. The differ-
ence betweenνHH and νHV for this data point is not significant
and can be treated as a measurement error.

From equations (5) and (8) and νHV > 0, we have

c11c33 − c2
13 > 0. (10)

From equations (6) and (10) and νHH > 0, if c13 is a real
number and it exists, we must have c11 − 2c66 > 0, and we
also have

c13 <
√

c33(c11 − 2c66). (11)

From equations (5), (6), and (10) and νHH < νHV we have

c13 >

√
c33(c11 − 2c66) + c2

66 − c66. (12)

Combining equations (11) and (12), we put the con-
straints on c13 for hydrocarbon source rocks in a neat form:

√
c33c12 + c2

66 − c66 < c13 <
√

c33c12. (13)

When transverse isotropy reduces to isotropy (c11 → c33

and c66 → c44), the low bound is equal to c33 − 2c44(for the
isotropic medium: c13 = c33 − 2c44), and the upper inequality
reduces to

K − 2
3

μ > 0 or λ > 0, (14)

which is consistent with the practical limits of Poisson’s ratio
for natural isotropic rocks as we discussed earlier in this study.

Thomsen parameter δ is defined as (Thomsen 1986):

δ = (c13 + c44)2 − (c33 − c44)2

2c33(c33 − c44)
. (15)

If δ is treated as a function of c13, the general shape of
the curve is a parabolic curve concaving upward, as shown in
Fig. 5. Here we assume that c33 > c44, which means that the
P-wave velocity is greater than the S-wave velocity in the sym-
metry direction. It can be seen that δ monotonically increases
with c13 when c13 > −c44; thus, substituting the inequality
(13) into equation (15) and using Thomsen’s (1986) notation,
we can get the constraints for δ

δ− < δ < δ+, (16)

where

δ− =
ε − 2r2

0 γ (1 − r2
0 (1 + 2γ ) +

√
(1 − r2

0 (1 + 2γ ))2 + 2ε)

1 − r2
0

,

Figure 5 Relation between constraints on c13 and constraints on
Thomsen parameter δ. (Parameters used for illustration: c11=70 GPa,
c33=40 GPa, c44=15 GPa, and c66=25 GPa).

δ+ =
ε − 2r2

0 γ + r2
0

√
1 − 2r2

0 (1 + 2γ ) + 2ε

1 − r2
0

,

where r0 = β0/α0, β0 and α0 are the shear velocity and P-wave
velocity along the TI symmetry axis, respectively. ε and γ are
defined by (Thomsen 1986)

ε = c11 − c33

2c33
, γ = c66 − c44

2c44
. (17)

One sees that δ is constrained by other Thomsen param-
eters, which are all properties in directions perpendicular and
parallel to the TI symmetry axis.

Alkhalifah and Tsvankin (1995) defined “anellipticity”
parameter (η) that describes the degree of deviation from el-
liptic anisotropy:

η = ε − δ

1 + 2δ
. (18)

The anellipticity parameter η is important for anisotropic
seismic data processing because it determines the relation be-
tween the normal moveout velocity and the horizontal velocity
(Tsvankin 2012). In terms of elastic constants, it is equal to

η = 1
2

(
c11(c33 − c44)

(c13 + c44)2 + c44(c33 − c44)
− 1). (19)

Similarly, as shown in Fig. 6, if we know the constraints
on c13, the constraints on anellipticity parameter η can be
determined by substituting the inequality (13) into equation
(19):

η− < η < η+, (20)
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Figure 6 Relation between constraints on c13 and constraints on anel-
lipticity parameter η. (Parameters used for illustration: c11=70 GPa,
c33=40 GPa, c44=15 GPa, and c66=25 GPa).

where

η− =
r2

0 ((ε − 2γ ) +
√

1 − 2r2
0 (1 + 2γ ) + 2ε)

r2
0 (1 + 4γ ) − (1 + 2ε) − 2r2

0

√
1 − 2r2

0 (1 + 2γ ) + 2ε

,

η+ =
r2

0 ((ε − 2γ ) + 2γ (r2
0 (1 + 2γ ) −

√
(1 − r2

0 (1 + 2γ ))2 + 2ε))

r2
0 (1 + 4γ ) − (1 + 2ε) − 4r2

0 γ (r2
0 (1 + 2γ −

√
(1−r2

0 (1 + 2γ ))2+2ε)
.

It can also be derived by substituting the constraints on
δ(equation (16)) directly into equation (18). Obviously, the
high bound of δ corresponds to the low bound of η.

L A B O R A T O R Y D A T A
AND T HE CONSTRAINTS

Figure 7 shows the crossplot between δ and νHH/νHV ra-
tio from ultrasonic velocity anisotropy measurement. The
data sources are from Thomsen (1986), Johnston and Chris-
tensen (1995), Vernik and Liu (1997), Jakobsen and Johansen
(2000), Wang (2002b, shale and coal samples only), and Sone
(2012, 2013). The data collected by Thomsen (1986) are
from various sources; only data points with anisotropy ob-
viously stronger than the measurement uncertainty (ε > 0.03
and γ > 0.03 ) are included. Wang’s data are corrected for
mistaking group velocity for phase velocity in the oblique di-
rection. If there is pressure-dependent measurement, no more
than three data points are selected to prevent overweighting
effect of this sample. The crossplot is divided into three areas.
In the left, several data points have negative νHH values. The
corresponding c13 values are above the high bound, and they

Figure 7 Crossplot between δ and νHH/νHV ratio from dynamic ve-
locity anisotropy measurement. Black points (137) are within the
physical bounds, and grey points (66) are outside of the bounds (data
sources: Thomsen (1986), Johnston and Christensen (1995), Vernik
and Liu (1997), Jakobsen and Johansen (2000), Wang (2002b), and
Sone (2012)).

tend to have higher values of δ . In the right area, there are
quite a few points with νHH > νHV. The corresponding c13

values are lower than the low bound, and they tend to have
lower values of δ. About two-thirds of the data points lie in the
centre area, where we believe that all the hydrocarbon source
rocks with TI anisotropy should lie within. The gray point in
the center area has negative value of c11 − 2c66, which might
be nonphysical as we will discuss later. Since there are much
more data points lying below the low bound than above the
high bound, there might be a general tendency of underesti-
mating δ. For clarity, we emphasise that the constraints for
c13 or δ might be different for each data point. Since these
constraints are derived from the relation between the Pois-
son’s ratios, the ratio of Poisson’s ratios can be directly used
to check whether a data point lies within or outside of the
bounds of c13 or δ. Next, we will analyse that most of data
points lying outside of bounds might be due to uncertainty in
laboratory velocity anisotropy measurement.

UNCERTAINTY IN LABORATORY
VELOCITY ANISOTROPY MEASUREMENT

Laboratory velocity anisotropy measurement on TI media re-
quires at least five velocity component measurements, among
which one velocity measurement must be made in oblique
direction. Traditionally this oblique velocity measurement is
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Figure 8 Sensitivity analysis: effect of angle error and velocity error on the estimation of c13.

made on a 45◦ plug (the angle between the axial direction of
the cylindrical plug and the TI symmetry axis is 45◦). Taking
exact 45◦ plug is difficult in practice, but people often ignore
the angle error because the formula to calculate c13 is simpler
if the angle is 45◦ or the exact angle is difficult to measure. If
the real phase angle θ is not equal to 45◦, then c13 should be
calculated by

c13 = 2 csc2 θ

√
(ρV2

Pθ − c11sin2θ − c44cos2θ )(ρV2
Pθ − c33cos2θ − c44sin2θ )

−c44. (21)

where VPθ is the phase velocity. As Yan, Han, and Yao (2012)
pointed out, this small angle error can have significant effect
on estimation of c13 and δ. In Fig. 7, we take only data points
satisfying 0 < νHH < νHV and assume that the true TI elastic
properties are measured. Then taking the phase velocity at
phase angles 43◦, 40◦, and 50◦, respectively, as phase velocity
at phase angle 45◦, we recalculate c13 and check how much
difference is made. For display convenience, c13 is normalized
by

c13n = c13 − c−
13

c+
13 − c−

13

, (22)

where

c−
13 =

√
c33(c11 − 2c66) + c2

66 − c66,

c+
13 =

√
c33(c11 − 2c66).

If c13n does not lie between 0 and 1, it is outside of the
bounds. As we can see in Fig. 8, negative 2◦ angle error can
make about 20% of the data points lie below the low bound;
negative 5◦ angle error can make about 62% of the data points
lie below the low bound; and positive 5◦ angle error can make
about less than 8% of the data points lie above the high bound.
In the bottom two panels of Fig. 8, we show the sensitivity of
velocity measurement error on c13n. If the phase velocity in 45◦

is underestimated by 1%, 22% of the data points move below
the low bound. If the phase velocity in 45◦ is overestimated
by 1%, only one data point moves above the high bound. The
above sensitivity analyses partially demonstrate why there are
more data points lying below the low bound than above the
high bound, as shown in Fig. 7.

Another important issue is the difference between group
and phase velocities. Dellinger and Vernik (1994) discussed
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Figure 9 Use of Snell’s law to simulate ultrasonic velocity measurement on a 45◦ plug with 1-inch diameter. The transducer dimension (diameter)
is 12 mm. The left panel shows the ray tracing from the left corner of the top transducer, and the right panel shows the corresponding transmission
travel times of different rays. In the TI medium, the dashed arrow denotes phase direction and the firm arrow denotes ray direction. The long
dashed thin straight lines denote the TI symmetry or reflection symmetry plane. The TI elastic properties are taken as the first sample (at 8634 ft)
from the dataset by Vernik and Liu (1997). The right panel shows the transmission travel time of rays in the left panel. The minimum travel
time is for the vertical incident ray (in red).

related problems associated with traditional triple-plug
velocity anisotropy measurement. Using Snell’s law for the
TI medium (Slawinski et al. 2000), Fig. 9 shows the ray trac-
ing of ultrasonic velocity measurement on the 45◦ plug. In
the TI medium, Snell’s law is still consistent with Fermat’s
principle; this is to say that, between the emission transducer
plane and the receiver transducer plane, the ray with mini-
mum travel time (the vertical incident ray) obeys Snell’s law,
and it does not necessarily have the shortest path. As shown
in Fig. 9, if the transducer is not wide enough (or the sample
is too long), the first arriving energy might be missed by the
receiving transducer and the phase velocity tends to be un-
derestimated. In practice, the transducers need to be at least
10% wider than the minimum width so that the first-arrival
signal can be strong enough for reliable breaktime picking.

After c11, c33, and c44 are known from non-oblique velocity
measurement, c13 can be calculated by

c13 =
√(

2ρV2
Pθ45◦ − c11 − c44

) (
2ρV2

Pθ45◦ − c33− c44

)− c44,

(23)

where VPθ45◦ is the 45◦ phase velocity. In practice, VPθ45◦ is
usually greater than the P-wave velocity and the S-wave veloc-
ity along the TI symmetry axis; hence, the second term under
the square root signal should always be positive, which re-
quires that the first term must be positive as well (If not, c13

will be a complex number). Therefore, underestimation of the
phase velocity VPθ45◦ will cause underestimation of c13, and
sometimes, it even leads to negative or even complex value of

C© 2015 European Association of Geoscientists & Engineers, Geophysical Prospecting, 64, 1524–1536



Physical constraints on c13 and δ 1531

c13. As shown in Fig. 5, δ is positively correlated with c13, so it
will be underestimated as well. Most of the velocity anisotropy
data cited in this study are based on the measurement of cylin-
drical plugs of 1-inch diameter. The lengths of the plugs are
often around 4 cm, which can be longer if the plugs are also
needed for static measurement. Therefore, there might be a
bias toward underestimation of c13 in the published velocity
anisotropy measurement data.

To improve measurement efficiency, Wang (2002a) used
a setup based on a single horizontal plug. An oblique veloc-
ity must be measured, which is actually group velocity. To
calculate c13 and δ, we need to convert the group velocity
to phase velocity and find the corresponding phase angle, and
then use equation (21) to calculate c13 . Figure 10 shows group
to phase correction effect on c13 and δ. It can be seen that, if
group velocity is mistook for phase velocity, c13 and δ will be
systematically underestimated.

The above analyses explain that why there are more data
points lying below the physical constraints of c13 and δ than
above the constraints. The data points out of the bounds might
be also due to some other factors. For example, the sample
has fractures crossing the bedding, which might lead to νHH >

νHV . Some samples might have significant heterogeneity on
the core plug scale. We sometimes find that the “horizontal”
plug is not really “horizontal”: the angle between the bedding
and the cylindrical plug axial direction might be more than
5◦. In addition, identification of the bedding direction is not
always straightforward by naked eyes, and multiple oblique
velocity measurements might be needed to identify the bedding
direction (Yan, Han, and Yao 2014). In these cases, either the
samples do not really belong to the TI medium or the measured
elastic properties are apparent properties.

APPLICATIONS

The physical constraints can help us understand the effect of
the other Thomsen parameters on δ. In Fig. 11, the δ con-
straints are plotted as function of β0/α0. The range of β0/α0

is selected based on laboratory anisotropy measurement on
hydrocarbon source rocks. As shown in Fig. 12(a), the β0/α0

ratios for shales are distributed around a narrow range of 0.5–
0.7. The curves in different colours represent the δ bounds for
different combinations of ε and γ . When ε is constant, δ will
increase with decreasing γ ; when γ is constant, δ will increase
with ε. Small δ occurs when γ is much greater than ε. High
δ occurs when ε is much greater than γ . It should be remem-
bered that, although ε and γ are theoretically independent

Figure 10 Phase to group correction effect on c13(above) and Thom-
sen parameter δ(below) using Wang’s data (shale and coal samples
only, Wang (2002b)).

variables, there is often fairly good correlation between them
from laboratory observation (Sayers 2004). The constraints
are less sensitive to the ratio of β0/α0 than the other Thomsen
parameters. For display convenience, we assume a constant
β0/α0 ratio of 0.55 and then plot the measured data with
bounds of δ. As shown in Fig. 13, the trends of the approxi-
mated bounds comply well with the laboratory measured data
if data points lying outside of the δ bounds are not displayed.

C© 2015 European Association of Geoscientists & Engineers, Geophysical Prospecting, 64, 1524–1536
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Figure 11 Relation between bounds of δ

and ε, γ, and ratio of β0/α0. Two of the up-
per bounds are terminating when crossing
with the low bounds due to c11 − 2c66 <

0, which might be non-physical.

The geometry of the bounding surfaces also clearly shows the
influence of ε and γ on δ. When c11 − 2c66 < 0, the upper
bound surface crosses the lower bound surface and disap-
pears. Figure 12(b) shows the histogram of c11 − 2c66 from
laboratory velocity anisotropy measurement. Of total of 203
data points, there are only 2 data points with c11 − 2c66 < 0,
which are from Thomsen (1986). We trace the data points
to the original report (Lin 1985), and it turns out that one
data point is due to data entry error and the other data point
is due to signals of substandard quality. Since c11 − 2c66 < 0
is simultaneously derived with the upper constraints of c13

(equation (11)), the laboratory data validate that our assump-
tion of νHH > 0 is rational.

Since δ is constrained by the non-oblique properties,
it might be possible that we can approximately predict δ

without oblique velocity measurement. In the upper panel
of Fig. 14, using data points within the bounds, we directly
correlate δ with the other Thomsen parameters. Comparing
the coefficients before ε, γ , and β0/α0 ratio, it is found that
δ is more sensitive to ε and γ than the ratio of β0/α0; δ is
positively correlated to ε and negatively correlated to γ . In
the lower panel, we use the bounds of δ (equation (16)) to

C© 2015 European Association of Geoscientists & Engineers, Geophysical Prospecting, 64, 1524–1536



Physical constraints on c13 and δ 1533

Figure 12 Distributions of (a) β0/α0 ratio and (b) c11 − 2c66 from
laboratory anisotropy measurement. Data sources same as Fig. 6.

predict δ . Considering there are a lot of data points lying out
of the bounds, it is reasonable to believe that the data points
within the bounds should also have significant uncertainty;
thus, the prediction results are encouraging. Also it should be
noted that the samples come from all over the world and are
in different saturation and pressure conditions.

In practical application of anisotropic seismic data pro-
cessing, the bounds on δ or η might be very useful in con-
straining estimation of TI parameters from seismic data. For
a certain area under study, if correlation between ε and γ is
established, by assuming a certain β0/α0 ratio, then δ can be
estimated as the average of the upper bound and low bound.

Figure 13 Comparison between estimated δ and the δ bounds using
constant β0/α0 of 0.55. (Above, all the data points in Fig. 6 and,
below, grey data points in Fig. 6 are removed).

D I S C U S S I O N

The physical bounds are brought up with organic shales in
mind. They should be applicable to TI sedimentary rocks
caused by preferred orientation of minerals and cracks and
layering effect. The intrinsic factor causing this type of TI
anisotropy is the universal law of gravity. Although this type
of rocks represent only a specified type of TI media, they are
most common and important for oil and gas exploration. If
systematic tectonic fractures cutting through the sedimentary
rocks layers or beddings significantly affect the elastic prop-
erties, then they should not be approximated as TI media
and the bounds we brought up in this study should not apply.
The physical constraints are not applicable to TI medium with
higher Young’s modulus along the TI symmetry axis than that
in the direction perpendicular to the symmetry axis. This type
of TI medium, although rare, does exist in nature. Basalt rock
with column joints (formed by thermal contraction) may be
a good example of this type of TI medium. We do not sug-
gest applying the physical constraints on individual mineral
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Figure 14 Prediction of δ: (a) from other Thomsen parameters and
(b) from δ constraints.

crystal, as special crystal lattice structure may lead to negative
Poisson’s ratio in a certain direction.

Since this study is focused on hydrocarbon source rocks
with TI anisotropy, the assumptions about smaller Young’s
modulus along the TI symmetry axis than that in the direction
perpendicular to the TI symmetrical axis and c33 > c44 can be
treated as well-known knowledge. The basic assumption for
derivation of the physical bounds is 0 < νHH < νHV , which is
validated by reasoning and static laboratory measurements.

Rocks are usually not ideally elastic. The magnitudes of
bulk modulus, shear modulus, and Young’s modulus can vary
depending on the magnitude and frequency of the stress ap-
plied. Poisson’s ratio might also vary under dynamic and static
measurements. Nevertheless, the fundamental relations be-

Figure 15 Relation between νHH and νHV from static and dynamic
measurements on organic shales (data from Sone (2012, 2013)).

tween these parameters, once established, should be same for
both static and dynamic measurements. For example, static
measurement shows c11 > c66. For dynamic measurement, c11

and c66 may both be different, but the relation c11 > c66 should
still hold. Figure 15 shows the crossplots between νHH and νHV

for both static measurement and ultrasonic dynamic measure-
ment using Sone’s data (2012, 2013). The organic shale sam-
ples come from Barnett, Haynesville, and Eagle Ford shales.
The data points from static measurement and dynamic mea-
surement are different. The static measurement is based on
strain measurements on a single horizontal plug, whereas the
dynamic measurement is based on velocity measurements on
five cylindrical plugs with angles 0◦, 30◦, 45◦, 60◦, and 90◦

angles to the TI symmetry axis, respectively. From Fig. 15,
no matter static measurement or dynamic measurement, the
overall pattern of νHH < νHV is same.

The energy constraints on TI elastic constants are sum-
marized by Dellinger (1991) as:

c11 > c66 > 0, c33 > 0, c44 > 0, (24)

c2
13 < c33(c11 − c66). (25)

It should be noted these constraints are for a general TI
medium, which does not specify c11 > c33, c66 > c44, and it
does not require Young’s modulus is lower along the TI sym-
metry axis than that in the direction perpendicular to the TI
symmetry axis. The physical constraints on c13 we brought up
are for a specified type of TI medium, which is stiffer along the
bedding/layering than the TI symmetry axis and does not have
a special network structure leading to negative Poisson’s ratio;
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thus, they are much tighter than the constraints by equations
(24) and (25).

CONCLUSIONS

For hydrocarbon source rocks with TI anisotropy, the elastic
constant c13 are constrained by c11, c33, and c66. Therefore, the
Thomsen parameter δ and anellipticity parameter η are con-
strained by the other anisotropy parameters that can be mea-
sured either along or perpendicular to the TI symmetry axis.
Using these constraints, we find out that there exist significant
uncertainties in laboratory velocity anisotropy measurement.
Various factors causing these uncertainties are analyzed. The
physical constraints on the Thomsen parameter δ can help
us understand the relation between δ and the other Thomsen
parameters. Generally, δ increases with ε and decreases with
increasing γ . Variation of β0/α0 of the hydrocarbon source
rocks in a certain area is usually small so that δ is less sensitive
to β0/α0. We also show that δ can be approximately predicted
by the other Thomsen parameters. The physical constraints on
δ and η should also have potential application on anisotropic
seismic data processing.
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