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ABSTRACT

We mapped probabilities of lithology and fluid based on
seismic and well observations in a heterogeneous carbonate res-
ervoir of the Sichuan Basin, southwest China, thus characteriz-
ing the reservoir complexity and identifying the potential sweet
spot. Rock physical analysis showed that the presence of a
vuggy-fracture porosity system combined with the fluids’ effect
complicate the elastic responses of heterogeneous carbonates.
This also gives physical insight into how the elastic properties
of different lithofluid classes can be distinguished. With the ap-
plication of Bayesian linearized amplitude variation with offset
inversion, we found that the posterior distribution of P- and S-
wave velocities were reliably extracted, whereas the inverted

density tended to show high uncertainty due to a lack of wide
angle data in the migrated seismic gathers. Finally, a Bayesian
approach was implemented to propagate uncertainty from
prestack seismic data to lithofluid classes in an integrated
framework. The gas-carbonate predictions with high posterior
probabilities were consistent with well observations at the
well location and the present geological continuity. The prob-
ability distributions for the anhydrite, limestone, and dolostone
were essential to understand the reservoir architecture and
delineate the reservoir heterogeneities. We also ascertained that
the uncertainty of lithofacies prediction is determined by the
uncertainty of seismic inversion as well as the uncertainty
of the link between lithofacies to their corresponding elastic
responses.

INTRODUCTION

Seismic characterization of carbonate reservoirs is challenging.
This is mainly because carbonates constantly undergo physical,
chemical, and biological changes during sedimentation and postde-
positional diagenesis, thereby causing significant heterogeneities in
rock properties. Quantitative lithofacies delineation from seismic
data is considered to be an important tool for understanding such
complexities and heterogeneities in carbonate reservoir. In this ar-
ticle, we present a case study to show how to predict probability
distributions of lithology and fluid from prestack seismic data in
a Paleozoic marine carbonate reservoir, Sichuan Basin, southwest
China. This geologically complex carbonate reservoir exhibits the
characteristics of very deep burial depth, overmatured source rock,
and strong heterogeneities due to the extensive diagenesis in geo-
logic history (Ma et al., 2008b).

Many factors can cause uncertainties for lithofacies prediction
from seismic data, such as data noise from geophysical measure-
ments and processing, approximation of physical models and also
the associated scale changes (Mukerji et al., 2001; Houck, 2002;
Avseth et al., 2005; Grana and Rossa, 2010). This is especially true
for carbonate reservoirs, which display wide variations in rock prop-
erties due to the complicated geologic processes. From the statis-
tical point of view, such uncertainties can be reduced if more
disparate sources of data, such as geologic knowledge, seismic data,
rock physics, and core information, can be combined. A Bayesian
setting will be a natural choice to integrate all the available infor-
mation to characterize the inversion uncertainty (Tarantola, 1987;
Eidsvik et al., 2004; Gunning and Glinsky, 2007; Bosch et al.,
2010). In general, probabilistic lithology and fluid prediction from
prestack seismic data entails the uncertainty of seismic inversion
and rock-physics inversion, and it has been studied by many authors
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through proposed methodologies and case studies (Eidsvik et al.,
2004; Larsen et al., 2006; Buland et al., 2008; González et al., 2008;
Rimstand and Omre, 2010; Ulvmoen and Omre, 2010; Rimstad
et al., 2012). However, most of those studies focus on sandstone
reservoirs with relatively less heterogeneities, and it is still very
challenging to demonstrate its application in the studied carbonate
reservoirs, which present strong heterogeneities. This is mainly due
to two factors described in the following two paragraphs.
First, the burial depth of the studied carbonate reservoir is deeper

than 6 km, and hence the signal-to-noise ratio (S/N) in the seismic
data is reduced significantly. Also, the deep targeted reservoir
makes it hard to obtain wide-angle gathers, resulting in difficulties
to extract reliable elastic parameters (P-wave velocity, S-wave
velocity, and density) through seismic inversion. To reveal the
reliability of the seismic inversion results for further quantitative
lithology prediction, it is necessary to evaluate their associated un-
certainties. In this study, we perform amplitude variation with offset
(AVO) inversion in the Bayesian framework to estimate the pos-
terior distribution of the inverted elastic parameters (Buland and
Omre, 2003).
Second, the complex diagenesis complicates the rock-physics

relationship in carbonates, which in turn makes seismic response
poorly understood. Therefore, understanding the sensitivity of the
elastic properties of carbonates to the fluids’ effect is critical to test
the feasibility of lithology and fluid prediction from seismic attrib-
utes. The elastic responses in carbonates are often considered to be
less sensitive to the fluids’ effect because carbonate rocks are often
very stiff. However, the fluids’ effect on the seismic rock properties
of carbonates can be dramatically amplified due to the presence of
heterogeneities and fractures (Li et al., 2003; Han, 2004). Rock-
physics modeling is used to study how the elastic properties of dif-
ferent lithofluid classes in this heterogeneous carbonate reservoir
can be distinguished, thereby providing physical insights into lith-
ology and fluid prediction from seismic data.
The intent of this paper is not to focus on the details of the prob-

abilistic inversion methodologies. Rather, through a case study, our
goal is to investigate how the geologic understanding and rock-
physics analysis can help us better understand and constrain the lith-
ofacies prediction from seismic data in a probabilistic framework.
The paper is structured as follows: We first introduce the geologic

background and related data set in the carbonate reservoir of the
Sichuan Basin, southwest China. The categorical lithology and
pore-fluid scenarios, which are termed as lithofacies classes, are de-
fined based on geologic information and well-log analysis prior to
the inversion. We then use rock-physics modeling to physically link
the defined lithofluid classes to the elastic properties. Next, a fast
Bayesian simultaneous AVO inversion approach is performed to
estimate elastic properties and their associated uncertainties in a
2D inline section extracted from a 3D migrated seismic data set.
Finally, we present and analyze the probabilistic lithology and fluid
inversion results from this 2D seismic data set.

GEOLOGIC SETTING AND DATA DESCRIPTION

The studied Yuanba gas field is the deepest marine strata gas field
found in China, and it is located in the northern end of the gently
deformed structural belts in the central Sichuan Basin (Long et al.,
2011). The reservoir rocks in the Lower Triassic formation are
primarily controlled by the oolitic shoal facies developed on the
evaporitic carbonate platform edge. The evaporate beds of the
lagoon-tidal flat facies in the Lower and Middle Triassic strata
formed the cap rock for the underlying gas accumulations (Ma et al.,
2008b). The deep buried reservoirs suffer multiphase tectonic
movements after deposition, which make the secondary diagenetic
processes very complex and thereby strongly reorganize the pore
space of reservoir rocks. The main diagenetic processes include
compaction-pressure solution, selective dissolution, fracturing, do-
lomitization, and recrystallization.
A stacked image of the seismic data is shown in Figure 1, in

which the red vertical line indicates the location of the available
well. The structures within the targeted seismic inversion zone ap-
pear relatively flat. For the purpose of AVO inversion, the seismic
data have been processed by a processing contractor with an am-
plitude-preserving workflow, ensuring that prestack data represent
the true offset dependent reflectivity. The quality of the seismic data
can be characterized as good with an S/N of around four.
Well logs play an important role in linking rock properties to

seismic data, which should be extensively analyzed prior to the
lithofacies inversion. The well-log data of lithology content, P-wave
velocity, S-wave velocity, density, and water saturation after depth-
to-time conversion, are displayed as functions of two-way travel-
time in Figure 2. As we can see from the curve of the water
saturation, gas-saturated dolostones are trapped between the layers
of brine saturated dolostone from the depth of 2680 to 2730 ms.
Here, dolomitization is considered to play a large role in improving
reservoir quality through increasing particle size in the mud-domi-
nated fabrics by replacing the lime mud with medium-size dolomite
crystals (Lucia, 1999). In addition, dolostone is less compactable
and hence more favorable for porosity preservation. There are sev-
eral layers of anhydrite deposition, which are attributed to the fre-
quent sea-level fluctuations. The occurrence of anhydrite is often
linked to diagenetic processes of evaporite mineralization. Note that
the overburden anhydrite that ranges from 2650 to 2680 ms, which
is considered the seal for the underlying dolostone reservoir, con-
tains some thin shale and dolostone layers. The well-log also shows
a thick limestone formation that is controlled by a relatively stable
depositional environment. More shale content is found in this lime-
stone unit, which is often associated with the low energy deposi-
tional environment, possibly in a lagoonal or central platform
setting. Nonetheless, the dolostone reservoir is pretty clean, which

Figure 1. Stacked seismic image of inline 209 (the negative ampli-
tudes are red, and the positive amplitudes are black). The dashed
rectangle identifies the targeted inversion zone, and the red line
identifies the position of well A.
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suggests that the depositional environment is probably related to the
higher energy setting such as platform margins. Based on the geo-
logic knowledge and petrophysical interpretation of well-log data,
we define four lithofacies in the targeted inversion zone: anhydrite,
dolostone, gas-carbonates, and limestone. The lithofacies show
fairly strong vertical variations based on this single well analysis,
implying that the reservoir exhibits complex depositional and
diagenesis in the geologic history. Rock properties can also be dis-
cerned from well-log data. For example, the trapped gas-carbonates
present elastic features of low velocity and low density. Further-

more, dolostone generally has higher P- and S-wave velocities,
whereas anhydrite tends to have higher density.

ROCK-PHYSICS ANALYSIS

The prediction ability is strongly dependent on the degree of
separation for lithofacies given seismic-derived elastic properties.
Statistical rock-physics relationships that are derived from well-log
data represent the link between the lithofacies to their correspond-
ing elastic properties. More importantly, it is critical to understand

Figure 2. P-wave velocity, S-wave velocity, density, and water saturation are displayed as a function of two-way traveltime in well A. Litho-
fluid classes are defined. Green, red, yellow, and blue represent lithofacies of anhydrite, dolostone, gas-carbonates, and limestone, respectively.

Figure 3. Core photos of reservoir rocks in the Yuanba gas field of Sichuan Basin, southwest China. Red parts represent pore space. (a) Fine-
medium crystal dolomitic limestone with microfractures, (b) power crystal dolostone with vuggy pores and microfracture, and (c) power crystal
dolostone with vuggy pores and microfractures.
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why the inverted elastic attributes can physically be used to identify
the lithofluid classes based on the geologic understanding of this
reservoir. In this section, we perform rock-physics analysis to dem-
onstrate how the heterogeneities of rock properties affect the result-
ing elastic responses.

Vuggy-fracture porosity system

Geologic observations suggest that the diagenetic product of frac-
turing, dissolution, compaction, and dolomitization significantly
improve the deep-buried reservoir quality. The pore space is hence
dominated by the secondary porosity. Figure 3 shows core plugs
representative of the carbonate reservoir formation in the Sichuan
Basin. The heterogeneous pore systems are closely related to small-
scale touching vugs (grain molds) and microfractures. Typically,
most of the fluid storage is in the vuggy system and most of the
flow capacity is in microfractures.
Vugs or moldic porosities are often formed from dissolution

processes by selectively dissolving grains composed of unstable
minerals. Such dissolution processes can occur within the meteoric
environment associated with fresh water or in the burial environ-
ment (Lucia, 1999). Moreover, the rich sour gas, such as H2S in this
reservoir, is believed to enhance the dissolution effect. Normally,
the vugs, or grain molds are often isolated and have poor connec-
tivity. Fortunately, the well-developed microfractures increase the
connection between the separate vugs and enhance the permeability
dramatically. This is supported by the fact that the reservoir rocks
have an average porosity of about 4%–5%, but the effective per-
meability could be as high as several hundred millidarcies based
on the core measurements. Microfractures in this reservoir could be
associated with dolostone’s brittleness and differential stress due to
the multiphase tectonic movement. Additionally, the developed mi-
crofractures, which serve as fluid conduits, are favorable for disso-
lution to take place. Overpressure is another important factor that
should be considered to facilitate the development and preservation
of the secondary porosity. First, overpressure can increase the solu-
bility of acid gas (CO2 and H2S), and it thereby enhances the dis-
solution ability of formation water. Second, overpressure tends to
preserve vuggy-fracture porosity system during the process of
burial compaction (Ma et al., 2008a).

Rock-physics modeling

Rock physics modeling is used to learn how the vuggy-fracture
porosity system and fluid behavior together affect the elastic proper-
ties. The dry-rock elastic moduli are computed using the differential
effective medium theory (Mavko et al., 2009; Xu and Payne, 2009;
Zhao et al., 2013). This scheme simulates porosities in a composite
of two phases by incrementally adding a small amount of pores
(phase 2) into a matrix (phase 1). The coupled system of ordinary
differential equation can then be written as

ð1 − ϕÞ d
ϕ
½K�ðϕÞ� ¼ ðK2 − K�ÞPð�2ÞðϕÞ; (1)

ð1 − ϕÞ d
ϕ
½μ�ðϕÞ� ¼ ðμ2 − μ�ÞQð�2ÞðϕÞ. (2)

With the initial conditions K�ð0Þ ¼ K1 and μ�ð0Þ ¼ μ1, where
K1 and μ1 are the matrix bulk and shear moduli, respectively;

K2 and μ2 are the bulk and shear moduli of the inclusion phase,
respectively; φ is the porosity and dφ is the incremental change
in porosity; and Pð�2Þ and Qð�2Þ are the geometric factors depending
on the aspect ratios of the elliptical pores. In this case, the pore
space is assumed to consist of a combination of stiff matrix porosity
(vuggy pores) and microfractures with aspect ratios of 0.4 and 0.01,
respectively. The solid matrix is assumed to be dolomite based, the
matrix porosity is assumed to be 0.05, and the crack density varies
from 0 to 0.30, which is calculated from the crack-induced porosity
and the aspect ratio of the cracks (Hudson, 1981). The gas-brine car-
bonate reservoir is assumed to be partially saturated, and the effective
fluid modulus is computed based on the Voigt average approximation
(Domenico, 1976; Mavko et al., 2009):

Kf ¼ SwKw þ SgKg; (3)

where Kf is the effective bulk modulus of the fluid mixture; Kw and
Kg, respectively, denote the bulk moduli of the brine and gas phases;
and Sw and Sg, respectively, denote the water saturation and gas sat-
uration. Finally, Gassmann’s fluid substitution method is performed
to add the fluid mixture to obtain the elastic response of the satu-
rated rock.
The simulated elastic properties of the carbonate’s VP∕VS ratio

versus P-impedance superimposed with well-log data are displayed
in Figure 4. The rock-physics modeling result explains the scatter-
ing point in terms of fluids and porosity heterogeneities. Figure 4a
and 4b mainly illustrates the effect of crack density and water sat-
uration, respectively. It turns out that the vuggy-fracture porosity
system combined with the fluids’ effect complicate the elastic re-
sponses of the heterogeneous carbonates. They show that the gas
has a strong effect on reducing P-impedance and VP∕VS ratio
for fractured carbonates, and this effect becomes stronger with
higher crack density. However, the brine-saturated fractured carbon-
ates exhibit slight increase in VP∕VS ratio and slight decrease in P-
impedance for intensely fractured carbonates. Physically, when the
fractures are dry or filled with gas, the seismic propagation velocity
that is normal to the fracture will be significantly decreased. In con-
trast, the brine drastically stiffens the very compliant fractures
(Schoenberg and Sayers, 1995). Consequently, it is physically rea-
sonable to understand that gas-carbonates in this reservoir can have
a good separation with the other three lithofacies. Figure 4b shows
that well-log data from the gas-carbonate interval nicely comply
with the different water saturation lines. It seems to be hard to
separate the saturation effect at low crack density (<0.10), but the
separation becomes significant with increasing crack density. Gen-
erally, the carbonate reservoir rocks having high gas saturation are
often associated with high crack density, implying that the prospec-
tive sweet spots potentially enjoy high effective permeability. In
addition, Figure 4a also suggests that anhydrite, dolostone, and
limestone can be distinguished to a certain degree. The spreads of
those brine-saturated lithofacies are considered to be largely caused
by the mineralogy effects based on the petrophysical interpretation
of log data (Figure 3), and they may also reflect the variability of
complex pore systems in the heterogeneous reservoir rocks. Note
that some scatters of anhydrite overlap with gas-saturated dolostone
and present a relatively lower VP∕VS ratio (Figure 4a). This is pos-
sibly caused by a certain amount of gas leakage into the silty string-
ers or fractured zones within the overburden anhydrite layer.
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PROBABILISTIC LITHOFACIES PREDICTION

In this section, we make inferences about the defined categorical
lithofacies from prestack seismic data. The lithofacies f and seismic
data d can be linked via a set of elastic parametersm. In a Bayesian
inversion setting, the posterior distribution for f given the seismic
gather d is generally expressed as (Buland et al., 2008)

pðfjdÞ ¼
Z

· · ·
Z

pðfjmÞpðmjdÞdm: (4)

Note that this equation only holds with the assumption of condi-
tional independence pðfjm; dÞ ¼ pðfjmÞ, which implies that the
seismic data do not give any additional information for the litho-
facies prediction when the elastic parameters are already known.

It is clear to see that equation 4 propagates uncertainty from seismic
data to lithofluid classes by integrating two posterior probabilities.
The first is the posterior probability of elastic attributes given seismic
data obtained by a Bayesian inversion approach (Buland and Omre,
2003). The second is the posterior probability of lithofacies condi-
tioned by elastic attributes based on the rock-physics inversion.

Bayesian seismic inversion

According to Bayes’ theorem, the posterior distribution of elastic
parameters given seismic data pðmjdÞ in equation 4 is defined as

pðmjdÞ ∝ pðdjmÞpðmÞ; (5)

where pðdjmÞ is the seismic likelihood function and pðmÞ is the
prior model for the elastic parameters. The seismic likelihood is de-
fined by the convolutional model with discrete matrix formulation
in Buland and Omre (2003) and Buland et al. (2008). The prior
model pðmÞ combines the contribution of the rock-physics likeli-
hoods and prior probabilities for all the defined lithofacies:

pðmÞ ¼
XN
f¼1

pðmjfÞpðfÞ; (6)

where pðmjfÞ is the rock-physics-likelihood function, pðfÞ is the
prior lithofacies model, and N is the total number of lithofacies.
The rock-physics likelihood is simulated from statistical rock-phys-
ics analysis of the available log data in Well A. Because the prior
geologic and spatial information about the lithofacies distribution in
the targeted zone are not taken into account, the prior probabilities
assigned to the each defined lithofacies classes are set as 0.25. Ob-
viously, pðmÞ has the multimodal distribution with each mode rep-
resenting each lithofacies, which is mathematically inconveniently

Figure 4. A rock-physics template presented as crossplots of
VP∕VS versus P-impedance, which is used to illustrate the effect
of (a) crack density and (b) fluid saturation. The two black lines
indicate 100% gas saturated and 100% brine saturated, the dashed
pink lines in panel (a) represent modeling results with different
crack densities, and the red solid lines in panel (b) indicate the im-
pact of different fluid saturation. Scattering data points in panel
(b) are only from the well-log data of gas carbonate interval, and
they are color coded by water saturation.

Figure 5. The angle gather at the well position, which is trans-
formed from the offset-domain common-image gathers. The maxi-
mum incident angle obtained here is 33°.
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used as a prior model for seismic inversion. Consequently, we ap-
proximate pðmÞ to p�ðmÞ with Gaussian distribution, which is
characterized by the expectation vector, the covariance matrix, and
the spatial-correlation function (Buland and Omre, 2003; Larsen
et al., 2006; Buland et al., 2008).
To perform Bayesian amplitude variation with angle (AVA) in-

version, we transform migrated prestack seismic gathers from the
offset domain to the reflection angle domain. Figure 5 shows the
transformed angle gather at the well position. Because the targeted

carbonate reservoir is very deep, the largest incident angle obtained
is about 33°. The wavelet used in the inversion is extracted from
seismic data in the well-tie setting, as shown in Figure 6. Note that
the wavelet in this case is angle independent, which is mainly based
on the fact that the prestack gathers have been preconditioned in-
cluding offset and spectral balancing of the seismic amplitudes. To a
certain degree, this can mitigate the impact of wavelet stretch and
increase the fidelity of angle gathers for AVA inversion. However, to
get more reliable inversion results, angle-dependent wavelets are
required to correct for uncertainties due to anisotropy effects, over-
burden effects, attenuation effects, and so on. Moreover, the low-
frequency information used to constrain seismic AVA inversion
comes from the expectation of the prior model of elastic parameters,
which assumes smoothing variations of elastic properties in the tar-
geted inversion window. Nonetheless, for lithofacies having large
contrasts and rapid variations of elastic properties, it is also reason-
able to give separate prior models for different lithofacies to provide
better discriminability of the low-frequency background trend.
The inversion results at the well position (Figure 7) show that the

inverted P- and S-wave velocities fit well with the well-log trends,
and some details of the vertical change can even be captured. How-
ever, the inverted density is not accurate enough to be retrieved. The
0.9 confidence intervals indicate that the uncertainty of the inverted
density is much higher than that of the inverted P- or S-wave veloc-
ity. This is likely to be caused by the realistic noise levels of seismic
data and lack of wide-angle reflectivity gather in the deep targeted
formation. The maximum a posteriori solution within the targeted
zone is shown in Figure 8. According to the previous rock-physics
analysis, the very low acoustic impedance and Vp∕Vs ratio from
2690 to 2740 ms in the seismic inversion result can be regarded
as the potential gas reservoir. The next step is to map the probability
of the gas carbonate reservoir.

Assessment of the posterior model

Following the approach presented in Buland et al. (2008), the
approximate likelihood model for the seismic
data given lithofacies can be written locally for
the time sample i as

pðdjfiÞ ∝
ZZ

pðmijfiÞp�ðmijdÞ
p�ðmiÞ

dmi;

(7)

where p�ðmijdÞ is the posterior seismic inversion
result using the Gaussian prior model p�ðmiÞ.
Here, we do not use density information for re-
liable lithofacies prediction due to its poor inver-
sion result as shown in Figure 7, even though it
is an important input to constrain the lithofacies
prediction, especially for the separation of gas car-
bonates. Thus, only P- and S-wave velocities are
used as links to estimate lithofacies probabilities
from seismic data. Recall that the relationship
of P- and S-wave velocities in this heterogeneous
carbonate reservoir exhibits significant variation
due to the presence of the complex vuggy-fracture
porosity system as well as the fluids’ effect; there-
fore, we assume that the P- and S-wave velocities
independently provide information to constrain

Figure 7. Seismic inversion result at the well position. The black line indicates the ac-
tual well-log data, the green line indicates well-log trend, the red thick line indicates a
maximum solution, and the red thin lines indicate an 0.9 prediction interval.

Figure 6. The angle-independent wavelet used in the inversion.
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the lithofacies prediction. This entails the conditional independence
between P- and S-wave velocities, and the rock-physics likelihood
can be consequently expressed as

pðmijfiÞ ¼ pðVpijfiÞpðVsijfiÞ. (8)

The histograms of four lithofacies’ P- and S-wave velocities in
well A are shown in Figure 9a. The rock-physics likelihoods dis-
played in Figure 9b are assumed to follow the Gaussian distribution
and can be calculated from the associated expectation and varian-
ces. As expected, the elastic properties of gas-carbonates can sep-
arate well with the other three lithofacies, but the variance and
associated uncertainty tend to be higher. Also, the elastic properties
of the anhydrite, limestone, and dolostone are overlapping each
other to a certain degree, but they present relatively lower variance
and associated uncertainty.
The approximate likelihood function in equation 7 and prior

probabilities of lithofacies define the approximate posterior litho-
facies distribution:

pðfijdÞ ∝ pðdjfiÞpðfiÞ; (9)

which can be normalized as

XN
f¼1

pðfijdÞ ¼ 1: (10)

To efficiently solve the integral in equation 7 (see Buland et al.,
2008), the likelihood function pðdjfiÞ can be considered as a con-
volution of the ratio hðmijfiÞ ¼ pðmijfiÞ∕p�ðmiÞ, with the Gaus-
sian kernel gðmi − m̂iÞ ¼ p�ðmijdÞ:

pðdjfiÞ ¼
ZZ

hðmijfiÞgðmi − m̂iÞdmi: (11)

Here, m̂ ¼ μmjd represents the posterior expectation of Bayesian
seismic inversion. Now, the convolution in equation 11 can be

Figure 9. (a) Histograms for the four lithofacies’ P- and S-wave
velocities. The curves are used to plot the boundary of the histogram
for each lithofacies. The data used are from the well log A in the
targeted reservoir. The yellow, green, blue, and red colors represent
the lithofluid classes of gas-carbonates, anhydrite, limestone, and
dolostone, respectively. (b) The rock-physics likelihoods for the
four lithofacies and the probability distributions for the P- and
S-wave velocity are assumed to be Gaussian.

Figure 8. Maximum a posteriori seismic inversion results of P-wave
velocity, S-wave velocity, and VP∕VS ratio within the targeted zone.
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numerically realized in the Fourier domain by the use of fast Fourier
transform. Consequently, we can compute the posterior probabil-
ities of lithofacies by looking up the precalculated likelihood after
Bayesian seismic inversion. In addition, we do not make any as-
sumptions about spatial dependency of lithofacies in neighboring
cells to assess the posterior model in this case study.

Results of the posterior probabilities for the lithofacies

Figure 10 displays the posterior probability for anhydrite, dolo-
stone, gas-carbonates, and limestone at the well position. The sum
of posterior probability of all lithofacies is equal to one. For a per-
fect prediction, the probability would be one in the position of refer-

ence lithofluid classes and zero otherwise. Generally, the predicted
posterior probabilities for the lithofacies are acceptable compared
with the actual lithology profile defined at the well position. It is
observed that the probabilities of gas-carbonates occurrence at
the reservoir zones (2700–2740 ms) are about 0.6–0.7, which dem-
onstrates that the gas-carbonates are highly predictable. This is
mainly due to two reasons: First, the inverted elastic properties from
seismic data have a good match with the actual log data and the
associated uncertainty is low in the gas-carbonate zone; second,
the rock-physics relationships for the gas-carbonates have a good
separation with other lithofacies. The prediction ability for the
dolostone is high at depths ranging from 2690–2700 ms and
2820–2850 ms. However, it is reduced at depths ranging from

2740–2750 ms and 2890–2900 ms, where they
are mistaken as limestone. A possible explanation
for this may be attributed to the poor elastic prop-
erty inversion results at the corresponding depths.
Even though the rock properties of the dolostone,
limestone, and anhydrite can be discriminated to a
certain degree, errors occasionally occur for dis-
criminating anhydrite, dolostone, and limestone.
The posterior probabilities of gas-carbonate,

anhydrite, dolostone, and limestone for the tar-
geted zone are displayed in Figures 11 and 12.
The lithofacies profile from well A is also marked
for easy comparison with the predicted result. The
inversion result suggests that the gas carbonates in
the top of the targeted zone (2700–2750 ms) show
varying posterior probabilities ranging from 0.5 to
0.8. Although the inversion procedure goes trace
by trace, without considering the lateral continu-
ity, the predicted probabilities about the gas-
carbonate area still show spatial continuity geo-
logically. Also, the reservoir rocks tend to be
heavily cracked based on the previous rock-phys-
ics analysis. In conjunction, those factors increase
our confidence to identify the gas carbonate
reservoir with high posterior probability as the po-
tential sweet spots. We also map the posterior
probabilities of anhydrite, dolostone, and lime-
stone. The targeted zone shows significant hetero-
geneities in terms of the lithology distribution,
which in turn gives feedback about the varying
depositional environment and strong diagenesis
that reorganized the reservoir in geologic history.
Even though the prediction uncertainty may be
high in certain areas, it is still useful for the delin-
eation of the reservoir architecture and construc-
tion of the geologic model.

DISCUSSION

The main limitation in this case study is that
the prior information about the spatial correlation
for the lithofacies model has not been taken into
account. Generally, the prior model for the seis-
mic lithofacies inversion can be constructed
based on the available geologic information,
well-log data, and seismic interpretation. Nu-
merically, the prior model on the lithofacies

Figure 10. (Left) The reference lithology and fluid profile, with anhydrite (green), dolo-
stone (red), gas-carbonates (yellow), and limestone (blue), is defined based on the well-
log analysis. (Right) Posterior probabilities for lithofacies prediction from seismic data
at the well position. The sum of posterior probability of each lithofacies is equal to 1.

Figure 11. Posterior probability for gas-carbonate distributions in the targeted reservoir.
The corresponding lithofacies profile from well A is plotted for comparison with the
inversion results.
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classes can be characterized by a Markov random field that captures
the locally vertical and horizontal continuities (Eidsvik et al., 2004;
Larsen et al., 2006; Rimstad and Omre, 2010; Ulvmoen and Omre,
2010). This should be considered in future work. Also, in this case,
we only use P- and S-wave velocities to infer the lithofacies prob-
abilities from seismic because the density is not reliably extracted
based on the three-term AVO inversion. It is also practically pos-
sible to use the elastic attributes of P-impedance in combination
with the VP∕VS ratio, which can be readily estimated using two-
term AVO information. This might enhance the prediction ability
to distinguish gas-carbonate from anhydrite because they have less
overlap if the information of P-impedance is included as illustrated
in Figure 4a. In addition, we assume the conditional independence
of P- and S-wave velocities in the rock-physics likelihood to predict
posterior probabilities of lithofacies. Strictly speaking, this assump-
tion is considered to be not in accordance with the seismic inversion
result because there exist some dependencies for the P- and S-wave
velocities inverted from the AVO attributes. It is important to note

that this should be considered as a special case for this hetero-
geneous carbonate reservoir where the presence of complex pore
system and fluid saturation effect result in strong P- and S-wave
velocity variations. However, such a treatment may subjectively en-
hance the prediction certainty because we do not account for the
redundancy in the information of elastic parameters.
The rock-physics likelihood and the prior elastic model used for

seismic inversion are better be estimated from several wells in this
area to include the lateral heterogeneities. Nonetheless, only one
well is available for this inversion test, which could increase the
uncertainty for lithology and fluid prediction. Also, due to the lim-
ited access to the well-log data, a blind well test, which would
strengthen the applicability of this method to characterize the car-
bonate reservoir, could not be performed. Finally, it is necessary to
point out that the uncertainties related to scale change and disper-
sion effects are not included in this study. Because when the com-
pliant fractures and stiff vuggy pores coexist in the heterogeneous
carbonates, velocity dispersion can be induced by an internal pore
pressure equilibration that takes place with fluid flowing from the
more compliant high-pressure regions to the relatively stiffer low-
pressure regions. Besides, patchy saturation in the gas carbonate
reservoirs may also contribute velocity dispersion. All those factors
should be cautiously calibrated to allow more reliable lithofacies
prediction.

CONCLUSIONS

Lithology and fluid prediction from seismic data in Sichuan
Basin, southwest China is significantly challenging due to its deep
burial depth and substantial heterogeneities. With integration of the
geologic information, rock-physics analysis, well-log, and seismic
data, we applied a Bayesian inversion approach to predict the pos-
terior probabilities for the defined lithofluid classes. We demon-
strate that it is important to perform rock-physics analysis before
conducting lithology and fluid prediction, in particular for the
heterogeneous carbonate reservoir. Based on our geologic under-
standing of the reservoir, the rock-physics modeling scheme we
used gives physical insight into how the lithofluid classes with dif-
ferent rock properties can be related to their corresponding elastic
responses. We conclude that the elastic responses of carbonates can
be sensitive to the fluids due to the presences of vuggy-fracture pore
system in this reservoir. Bayesian seismic inversion helps to char-
acterize the uncertainty of the extracted seismic attributes. For the
studied deep targeted carbonate reservoir, it is found that the density
prediction is not reliable with high uncertainty. Therefore, we only
use P- and S-wave velocities for lithology and fluid prediction. The
posterior probabilities for the four defined lithofacies are mapped in
the target zone, which aid the identification of the potential gas-car-
bonate formation with geologic continuity. The case study also il-
lustrates that the prediction strength is controlled by the uncertainty
of the rock-physics likelihood and the accuracy of the seismic in-
version results.
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Figure 12. Posterior probabilities for anhydrite, dolostone, and
limestone distributions in the targeted reservoir. The corresponding
lithofacies profile from well A is plotted for comparison with the
inversion results.
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