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ABSTRACT

Variations of reflection amplitude with offset and azimuth are
sensitive to the presence of natural and induced fractures. We
tested inversion for fracture compliance matrix components
from wide azimuth noisy synthetic PP-reflection data. The mod-
el was a fractured reservoir with monoclinic symmetry, formed
by two sets of vertical asymmetric fractures embedded in a VTI
background. The fractures (joints) were assumed to be vertical,
with noncircular shape and/or with asymmetric shear compli-
ance. Results of synthetic inversion showed that an incorrect
assumption about fracture shear symmetry (e.g., treating asym-
metric fractures as rotationally invariant fractures) can cause
considerable error in estimation of the fracture compliance
matrix. Components of effective second- and fourth-rank frac-
ture compliance matrices for a medium with monoclinic sym-
metry (which takes into account layering and multiple fracture

sets) can be used as attributes related to the characteristics of the
fractured medium. Monte Carlo simulation was used to test the
effect of uncertainties in the a priori information (about back-
ground VTI parameters of unfractured rock), as they affect
inversion for these attributes. According to this analysis, the
direction of fast shear-wave polarization was inverted robustly
in the Monte Carlo simulation. Although the average values of
the components of fracture compliance matrices obtained from
Monte Carlo simulation were in agreement with the actual
values used for forward modeling, individual values obtained
in Monte Carlo simulation were sensitive to uncertainties in
the background properties in general. Because the elastic prop-
erties of background VTI media without fractures (or other
azimuthally variable features) do not cause azimuthal changes
in reflection coefficient variation with offset, simultaneous
inversion for background properties and fracture tensor compo-
nents require additional constraints.

INTRODUCTION

Fractures usually show preferred orientations that may result in
significant permeability anisotropy in the reservoir. Thus it is im-
portant for optimum drainage that the separation of producing wells
should be more closely spaced along the direction of minimum per-
meability than along the direction of maximum permeability
(Sayers, 2010). This work studies the feasibility of determining
these preferred directions using seismic data.
In the presence of oriented sets of fractures, seismic wave

velocities and reflection amplitudes vary with offset and azimuth.
Seismic velocity anisotropy can be caused by different factors, such
as rock fabric, grain-scale microcracks, rock layering, and aligned
fractures at all scales, provided that the characteristic dimensions

of these features are small relative to the seismic wavelength
(Worthington, 2008). Reflection amplitudes have higher vertical
resolution and are more sensitive to the properties of the reservoir,
compared to velocities. Therefore, they have advantages over seis-
mic velocities for characterizing fractured reservoirs. Sil et al.
(2011) also discuss the advantages of using seismic amplitudes over
seismic velocities. Lynn et al. (1994) use P-wave amplitude varia-
tion with offset and azimuth (AVOA) data to characterize fractured
reservoirs, using a simple model for the fractures. In this paper,
AVOA is used to invert for the components of the fracture compli-
ance matrices, while allowing for more complex fracturing. These
matrices capture the effect of variable fracture orientation and
density, specific compliance, the most compliant direction in the
reservoir (Helbig, 1994; Sayers, 2009), and fracture interactions.

Manuscript received by the Editor 12 August 2012; revised manuscript received 6 October 2012; published online 5 February 2013.
1University of Houston, Department of Earth and Atmospheric Sciences, Houston, Texas, USA. E-mail: meftekhari@gmail.com.
2University of Houston, Department of Earth and Atmospheric Sciences, Houston, Texas, USA, and Delta Geophysics, Houston, Texas, USA. E-mail:

lathomse@mail.uh.edu.
3University of Houston, Department of Earth and Atmospheric Sciences, Houston, Texas, USA, and Schlumberger, Houston, Texas, USA. E-mail: csayers@

slb.com.
© 2013 Society of Exploration Geophysicists. All rights reserved.

N1

GEOPHYSICS, VOL. 78, NO. 2 (MARCH-APRIL 2013); P. N1–N10, 9 FIGS., 1 TABLE.
10.1190/GEO2012-0319.1

D
ow

nl
oa

de
d 

02
/0

5/
13

 to
 1

29
.1

16
.1

98
.1

88
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



Far (2011), Far et al. (2012), and Eftekharifar and Sayers (2011a,
2011b), among many others, demonstrate the use of synthetic
AVOA data and resolution matrix for the characterization of frac-
tured reservoirs with “symmetric fractures,” i.e., fractures with
rotationally invariant shear compliance. For such fractures, it is as-
sumed that the specific shear compliance of the fractures is rotation-
ally invariant around the normal to the fractures. The theory of
Sayers and Kachanov (Kachanov, 1980; Sayers and Kachanov,
1991; Sayers and Kachanov, 1995) is used for effective medium
modeling of media with rotationally invariant fractures. This work
extends the previous work to the case of asymmetric fractures.
Previous models used to invert the seismic response of fractured

reservoirs often assume a single set of aligned fractures with hor-
izontally transverse isotropic (HTI) symmetry (e.g., Mallick et al.,
1996; Rüger, 1997; Sayers and Rickett, 1997), whereas most reser-
voirs contain several sets of fractures with variable orientation with-
in a given fracture set (see, e.g., Sayers, 1998; Bakulin et al., 2000;
Sayers and Dean, 2001; Far, 2011). The use of simplified models
such as HTI can be misleading (see, e.g., Far, 2011; Far et al., 2012).
Results of this study show the importance of our assumptions

about fracture shape and the consequences of considering simplified
models for fractures. Results show that knowledge of background
unfractured rock properties is crucial for accurate inversion of frac-
ture parameters. Optimization of seismic survey design is demon-
strated using singular value decomposition and inversion of
synthetic AVOA data (see Far, 2011; Eftekharifar and Sayers,
2011a, 2011b; Far et al., 2012). Synthetic AVOA data for an arbi-
trary number of differently oriented vertical fractures can be ana-
lyzed to identify which well-resolved parameter combinations
can be determined for various experimental geometries.

THEORY

According to linear slip theory (e.g., Schoenberg, 1980), the small
vector difference across a fracture, in the displacement, is assumed to
depend linearly on the traction vector (Jones and Whittier, 1967;
Schoenberg, 1980). For a vertical fracture surface within an elastic
medium, we assume a coordinate system with x1 and x3 in directions
tangential to the local fracture plane and x2 perpendicular to that frac-
ture plane. Let u denote displacement (see Figure 1a), and let

Δu ¼ uR − uL (1)

denote the difference or discontinuity of displacement between the
right (R) fracture face and left (L) fracture face. The time dependency
is suppressed. The traction vector t we take as the second row of the
stress tensor, with components τ21, τ22, and τ23, which are the forces
per unit area that the material on the right side of the interface exerts
on the left side. In index notation,

Δui ¼ Bijtj: (2)

If there is no rotational symmetry around the normal x2 to the
fracture (e.g., due to different fracture dimensions in different direc-
tions and/or slickensides, striations, or “microcorrugation” [Bakulin
et al., 2000]), one can define the fracture shear compliances BT and
BS (T for transverse; S for shear) in two principal directions
(assumed here to be x1 and x3), and also normal compliance BN

in the direction perpendicular to the fracture plane (see Figure 1b).
For fully asymmetric fractures, the B tensor is written as

B ¼
2
4 BT 0 B13

0 BN 0

B13 0 BS

3
5: (3)

For the vertical fractures considered in this work, we further
assume that the fractures have a horizontal mirror symmetry plane
perpendicular to x3 (the vertical direction). These assumptions in-
clude joints, elongated in the one-direction, and exclude cracks that
are striated at angles other than 0° or 90°. These assumptions seem
to be reasonable in contexts in which the maximum principal stress
is vertical, and the failure is of Type I (extension). They restrict the
generality of the following, but they include a large class of non-
circular cracks; we refer to these below as “asymmetrical fractures.”
The matrix B then becomes

B ¼
2
4BT 0 0

0 BN 0

0 0 BS

3
5: (4)

If the asymmetry comes from the overall crack shape (e.g.,
ribbon-shaped joints rather than penny-shaped cracks), intuitively
these horizontal excess specific compliances BT will be larger than
the corresponding vertical parameters BS. Worthington (2008)
shows that fracture specific compliances are related to fracture
dimension.
As one example, Margetan et al. (1988) model a set of fractures

consisting of regular arrays of thin striplike cracks embedded in a
background medium with Poisson’s ratio ν, as shown in Figure 2;
the width of the cracks is assumed to be small compared to the
wavelength. Using the results tabulated by Tada et al. (1973), Mar-
getan et al. (1988) find that for a periodic array of strip cracks with
shear traction parallel to the long axis of the cracks (ν is the Poisson
ratio of the homogeneous background medium)

BN∕BT ¼ 1 − ν; (5)

whereas for traction perpendicular to the long axis of the cracks,

BN∕BS ¼ 1: (6)

As a result, a fracture modeled as a periodic array of strip cracks
will display anisotropy of the shear compliance in the plane of the
fracture with

BS∕BT ¼ 1 − ν: (7)

Figure 1. (a) The normal and tangential displacements at the face of
the fracture are denoted by u3, u1, and u2. The normal and tangential
components of the displacement discontinuity at the fracture are
given by Δui ¼ uRi − uLi and are related to the normal and shear
tractions. (b) Vertical asymmetric fractures.
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This model is not really indicative of a set of joints, which are
repeated in the x2 direction, rather than the x3 direction, but it
indicates the sort of variation that we might expect.
In another model, an elliptically shaped fracture in an isotropic

background with normal n and principal axes s and t in the plane
of the fracture, the fracture compliance matrix can be written
(Kachanov, 1992) as

B ¼ BNnnþ BSssþ BTtt; (8)

where

BN ¼ 8ð1 − ν2Þ
3EðkÞ

πab2

EðkÞ ¼
32ð1 − ν2ÞS2
3πEðkÞP ; (9)

where P ¼ 4aEðkÞ and S ¼ πab are the perimeter and area of the
ellipse, and EðkÞ is the complete elliptic integral of the first kind,
with argument k ¼ ½1 − ðb∕aÞ�1∕2 (Budiansky and O’Connell,
1976; Sevostianov and Kachanov, 2002). Here, BT and BS are ob-
tained from BN by replacing EðkÞ by Q and R, respectively, where

Qðk; νÞ ¼ k−2½ðk2 þ ν − νk2ÞEðkÞ − νð1 − k2ÞKðkÞ�; (10)

Rðk; νÞ ¼ k−2½ðk2 − νÞEðkÞ þ νð1 − k2ÞKðkÞ�; (11)

where KðkÞ is the complete elliptic integral of the second kind
(Budiansky and O’Connell, 1976; Sevostianov and Kachanov,
2002). Hence, we have

BT∕BS ¼ Qðk; νÞ∕Rðk; νÞ: (12)

Figure 3 shows a plot of BT∕BS for elliptical cracks for different
aspect ratios b∕a, where b is the minor and a is the major axis in the
plane of the crack, for various values of the Poisson’s ratio of the
background medium, assumed isotropic. When a ¼ b, BT ¼ BS as
expected, but as b∕a decreases, BT becomes more compliant than
BS. As b∕a → 0, BS∕BT → 1 − ν, the limit for strip cracks given by
equation 7. This effect is particularly significant for carbonate or
shale reservoirs for which Poisson’s ratios in the range greater than
0.25 are not uncommon.

From these models, we conclude that values of BS∕BT < 1,
but not ≪1, are plausible, for asymmetric fractures in an isotropic
background. We assume that similar values are appropriate for such
fractures in a polar anisotropic background.
For a vertical asymmetric fracture with an arbitrary azimuth, B

can be written in the following compact form (Far, 2011; Far et al.,
2012):

BðrÞ
ij ¼ BðrÞ

N ninj þ BðrÞ
T ðδij − ninjÞ þ ðBðrÞ

S − BðrÞ
T Þδ3iδ3j;

(13)

where ni (i ¼ 1, 2, 3) is the ith component of the vector normal to
the fracture plane. In an elastic medium that contains an arbitrary
number of sets of fractures with arbitrary orientation distribution,
using the divergence theorem and Hooke’s law it can be shown
(Hill, 1963; Sayers and Kachanov, 1995; Lehner, 2008) that the
elastic compliance tensor of the fractured medium can be written
in the following form:

Sijkl ¼ S0ijkl þ ΔSijkl; (14)

where S0 is the compliance matrix of the background medium
(including the effects of stress, pores, and cracks, except for those
fractures explicitly included in ΔS, which are treated expli-
citly here).
Following Nichols et al. (1989), the additional (effective) com-

pliance matrix ΔS, for Q sets of aligned fractures can be written,

ΔS ¼
XQ
q¼1

ΔSq; (15)

where ΔSq is the effective fracture compliance matrix of the qth set
of aligned fractures. Implicitly, each of these effective fracture com-
pliances depends upon the rest of the microgeometry, specifically
including the presence, location, size, and orientation of the other
fractures (including their intersections, if liquid filled).
Defining effective normal and shear compliances (Sayers and

Kachanov, 1995; Sayers, 2010) and following the same logic as
described therein for rotationally invariant fractures, one finds

Figure 2. Margetan et al. (1988) consider interfaces consisting of a
periodic array of cracks. The shaded regions indicate cracks at the
interface, whereas the unshaded regions indicate perfect bonding.
The cracks are assumed to be thin in the direction perpendicular
to the interface. Note that the cracks are thin in the direction perpen-
dicular to the figure. Therefore, the planes of the cracks are normal to
the x2 direction and therefore parallel to the plane of the figure.

Figure 3. Plot of BT∕BS for elliptical cracks for different aspect
ratios b∕a, where b is the minor axis and a is the major axis in
the plane of the crack, for various values of Poisson’s ratio of
the background medium, assumed isotropic.

Asymmetric fracture characterization N3
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ΔSijkl ¼
1

V

X
r

�
BðrÞ
T

4
ðδiknðrÞj nðrÞl þ δiln

ðrÞ
j nðrÞk þ δjkn

ðrÞ
i nðrÞl

þ δjln
ðrÞ
i nðrÞk Þ þ ðBðrÞ

S − BðrÞ
T Þ

4
ðδ3iδ3knðrÞj nðrÞl

þ δ3iδ3ln
ðrÞ
j nðrÞk þ δ3jδ3kn

ðrÞ
i nðrÞl þ δ3jδ3ln

ðrÞ
i nðrÞk Þ

þ ðBðrÞ
N − BðrÞ

T ÞnðrÞi nðrÞj nðrÞk nðrÞl

�
AðrÞ: (16)

We recast this as

ΔSijkl ¼
1

4
ðδ3iδ3kκjl þ δ3iδ3lκjk þ δ3jδ3kκil þ δ3jδ3lκikÞ

þ 1

4
ðδikαjl þ δilαjk þ δjkαil þ δjlαikÞ þ βijkl;

(17)

where δij is the Kronecker delta and

αij ¼
1

V

X
r

BðrÞ
T nðrÞi nðrÞj AðrÞ;

κij ¼
1

V

X
r

ðBðrÞ
S − BðrÞ

T ÞnðrÞi nðrÞj AðrÞ;

βijkl ¼
1

V

X
r

ðBðrÞ
N − BðrÞ

T ÞnðrÞi nðrÞj nðrÞk nðrÞl AðrÞ; (18)

where the sum is over all fractures in volume V (implicitly including
all fracture sets q), nðrÞi is the ith component of the normal to the rth
fracture, AðrÞ is its area, and BðrÞ

N and B ðrÞ
T;S are its normal and shear

compliances. The relative magnitude of κ shows the degree of
asymmetry of the fractures; thus, κ will reduce to zero for rotation-
ally invariant fractures. It is assumed here that the background me-
dium (without fractures) is polar isotropic with a vertical axis of
rotational symmetry (VTI). In this case, the elastic symmetry
of the fractured rock will be monoclinic for an arbitrary number
of vertical fractures with different azimuths, although this symmetry
reduces to orthotropic in certain simple situations (Far, 2011). The
excess compliances ΔSijkl, resulting from the presence of one or
more sets of fractures with arbitrary azimuths are then, in the con-
ventional two-index (Voigt) notation (Far, 2011; Far et al., 2012)

ΔS¼2
6666664

α11 þ β1111 β1122 0 0 0 α12 þ 2β1112
β1122 α22 þ β2222 0 0 0 α12 þ 2β1222
0 0 0 0 0 0

0 0 0 α22 þ κ22 α12 þ κ12 0

0 0 0 α12 þ κ12 α11 þ κ11 0

α12 þ 2β1112 α12 þ 2β1222 0 0 0 α11 þ α22 þ 4β1122

3
7777775
:

(19)

Derivations for the more general case of nonvertical fractures are
shown in Appendix A. The effective compliance tensor Sijkl can be
calculated using equation 14, which can be inverted for the stiffness
tensor C, of seismological interest. But, when the excess compli-
anceΔS is small, one can directly calculateC as a perturbation from
the background stiffness matrix C0 (e.g., Sayers, 2009):

C ¼ C0 − C0 ΔSC0: (20)

We will use, for the VTI background, C0 ¼ CVTI. The direction
of the fast vertically propagating shear-wave polarization can be
obtained as (Far, 2011; Far et al., 2012)

tanð2φS1Þ ¼
2ðα12 þ κ12Þ

α11 þ κ11 − α22 − κ22
: (21)

For reflectivity modeling, a two-layer model will be assumed, in
which the overburden is assumed to be VTI without fractures, and
the underlying medium is assumed to consist of different sets of
fractures embedded in a VTI medium (see Figure 4). Further,
the anisotropy and contrast between the overburden and reservoir
are assumed to be small. In this situation, the P-wave plane-wave
reflection coefficient can be written in the following form (Pšenčík
and Martins, 2001):

RPPðθ;ϕÞ ¼ Riso
PPðθÞ þ

1

2
Δεz

þ 1

2

��
Δδx − 8

V̄S
2

V̄P
2
Δγx

�
cos2 ϕþ

�
Δδy − 8

V̄S
2

V̄P
2
Δγy

�
sin2 ϕ

þ 2

�
Δχz − 4

V̄S
2

V̄P
2
Δε45

�
cos ϕ sin ϕ − Δεz�sin2θ

þ 1

2
½Δεx cos4 ϕþ Δεy sin4 ϕþ Δδz cos2 ϕ sin2 ϕ

þ 2ðΔε16 cos2 ϕþ Δε26 sin2 ϕÞ cos ϕ sin ϕ�sin2 θ tan2 θ; (22)

where θ is the polar angle; ϕ is the azimuth (measured with respect
to the x1 axis of an arbitrary coordinate system); Riso

PPðθÞ denotes the
weak-contrast reflection coefficient ignoring all anisotropic terms;
and V̄P ¼ VP01þVP02

2
, V̄S ¼ VS01þVS02

2
are the average properties of the

upper and lower media. The differences (in equation 22) across the
plane in generalized anisotropic parameters (Thomsen, 1986) are,
for example, Δεx ¼ εlowerx − εupperx (Pšenčík and Martins, 2001; Far
et al., 2013). In terms of the specific compliance matrices α, κ, β,
these parameters are presented in Appendix B.
Substitution of expressions for the anisotropy parameters in terms

of α, κ, β into equation 22 allows the “sensitivities” Fij and Fijkl of
RPPðθ;ϕÞ to αij, κij, and βijkl to be determined (Far, 2011; Far et al.,
2012)

Figure 4. Symmetry types considered for host (overburden) me-
dium (VTI) and reservoir (monoclinic).

N4 Far et al.
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RPPðθ;ϕÞ ¼ Riso
PPðθÞ þ Raniso

PP ðθÞ þ Fα
11ðθ;ϕÞα11

þ Fα
12ðθ;ϕÞα12 þ Fα

22ðθ;ϕÞα22 þ Fκ
11ðθ;ϕÞκ11

þ Fκ
12ðθ;ϕÞκ12 þ Fκ

22ðθ;ϕÞκ22 þ Fβ
1111ðθ;ϕÞβ1111

þ Fβ
1112ðθ;ϕÞβ1112 þ Fβ

1122ðθ;ϕÞβ1122 þ Fβ
1222ðθ;ϕÞβ1222

þ Fβ
2222ðθ;ϕÞβ2222: (23)

It should be noted that in equation 23, the second term in the right-
hand side is only a function of offset because the background is
VTI, which does not depend on the azimuth. Equations for sensi-
tivities Fij and Fijkl are given in Appendix C.

INVERSION

In this section, the accuracy of inversion for the components of
the fracture matrices from synthetic AVOA data is examined. Syn-
thetic PP-reflection data were calculated using equation 22 (with
known elastic parameters), and random noise was added. The frac-
tured medium was assumed to have monoclinic symmetry with two
vertical asymmetric fracture sets having azimuths of −30° and 50°
with respect to the x1-direction. The fracture sets had different
fracture densities, with 70% of the contribution to the trace of
αij coming from one set, and 30% from the other
set. Fracture compliances gave an overall 10%
vertical shear-wave splitting if all fractures were
parallel. For the examples considered here (gas
shale), wide azimuth (WAZ) seismic data were
considered with ϕ varying from 0° to 90°. The
input to the inversion was the synthetic AVOA
data; it is outside the scope of this work to
deduce this reflectivity from the amplitudes of
received data, as a function of offset, the

deduction of which involves many issues (e.g., propagation effects)
not considered here.
Depending on the extent of the reservoir and/or fractured area,

and also the survey design geometry, one can stack the seismic data
in different azimuth and offset intervals to give an increase in fold
and signal-to-noise ratio (S/N) as required. (Stacking should be
done if the fractures are present in a large area of the reservoir;
otherwise, stacking will smear the effect of fractures.) In this work,
reflectivity data were assumed to be sparse in azimuth (they are
assumed to be stacked in intervals of 5°). Therefore, high-quality
reflection data are assumed to be available at 5° steps in azimuth
and 2° steps in the offset direction.
For reservoirs with published data in the literature, results of

inversion using reflectivity data with S∕N ¼ 2 are shown below.
Far et al. (2012) analyzed the effect of uncertainty in background
elastic parameters. We assume that BN∕BT ¼ 0.75 (which is a rea-
sonable value for gas shales — Sayers and Kachanov, 1995), and
that BS∕BT ¼ 0.5. Parameters given by Shan et al. (2010) and Bayuk
et al. (2009) for Woodford shale, listed in Table 1, are used (see Far
et al. [2012] for more details about parameter selection). The sym-
metries of the upper and the middle Woodford are shown in Figure 4.

Figure 5. Distributions of randomly generated VP, VS, ρ, and Thomsen parameters for Monte Carlo simulation. Horizontal black lines show
the values of parameters used for reflectivity modeling.

Table 1. Parameters for Woodford shale (Bayuk et al., 2009; Shan et al., 2010).

Woodford
shale

VP0
(km∕s)

VS0
(km∕s)

Density
(g∕cm3)

ε δ γ

Upper 4.509 2.855 2.855 0.1 0.1 0.1

Middle 4.161 2.687 2.46 0.29 0.17 0.1

Asymmetric fracture characterization N5
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The forward problem has the following simple form:

R ¼ Fw: (24)

In matrix form,

2
6664
R1

R2

..

.

RN

3
7775 ¼

2
66664

Fα
111

Fα
121

Fα
221

: : : Fβ
22221

Fα
112

Fα
122

Fα
222

· · · Fβ
22222

..

. ..
. ..

. ..
. ..

.

Fα
11N

Fα
12N

Fα
22N

· · · Fβ
2222N

3
77775

2
6664
α11
α12
..
.

β2222

3
7775;

(25)

where R is a vector (of length N) containing all data (reflection
coefficients), w is a vector (of lengthM) that represents the medium
parameters (components of the second- and fourth-rank fracture
matrices), and F is the sensitivity matrix (N ×M). Inversion can
be performed using the conjugate gradient method.
The background (unfractured) parameters (assumed to be known

in this work) can be obtained, with uncertainty, using, e.g., statis-
tical methods (e.g., Eftekharifar and Han, 2011; Far, 2011). There-
fore, to invert for fracture parameters using this work, elastic
parameters of the background medium without fractures (in our
case, VTI parameters of the background medium as shown in
Table 1) should be well known (albeit with some uncertainty).
To account for the uncertainties in the prediction of background
properties, Monte Carlo simulation is used. Thus, “correct” syn-
thetic reflection data (shown by R in equation 24 above) were com-
puted using the VP, VS, ρ, and Thomsen parameters from Table 1.
Then 50 sets of randomly and independently generated VP, VS, ρ,
and Thomsen parameters, with standard deviation equal to 15% of
the reservoir elastic parameters (see Figure 5), were used to com-
pute the “incorrect” coefficient matrices contained in F (equation 24
above). Inversion is performed 50 times in each example, using the
correct reflection data and 50 incorrect coefficient matrices. In this
way, uncertainty is included in the matrix of coefficients or sensi-
tivities. The black lines show the value of the constant parameters
used for forward modeling.
Inversion should be preceded by a resolution matrix analysis

(Menke, 1989; Eftekharifar and Sayers, 2011a, 2011b; Far,
2011; Far et al., 2012) to determine the confidence in the inversion
for the fracture tensor components.

RESULTS

In this work, two inversion cases are considered: (1) Inversion for
asymmetric fracture parameters using WAZ data forward-modeled
using the theory of such fractures and (2) inversion for rotationally
invariant fracture parameters using WAZ data forward-modeled
using theory of asymmetric fractures. This will be useful to show

Figure 6. Reflection coefficient plots for WAZ case showing
(a) noise free reflectivity and (b) noisy reflectivity with S∕N ¼ 2,
which was used for inversion.

Figure 7. Inversion results for αij, κij, and βijkl using synthetic
WAZ reflectivity data computed with the theory of asymmetric frac-
tures (S∕N ¼ 2). (a) Inversion of asymmetric fracture parameters
(correlation coefficient ¼ 94%). (b) Inversion of fracture with rota-
tionally invariant fracture compliances (correlation coefficient ¼
75%). In both cases, the fracture compliance matrix components
values are made dimensionless by multiplying by the shear modulus
of the background medium. The vertical axes show the components
of the fracture compliance matrices computed by forward modeling,
and the horizontal axes show the values obtained from inversion.
The comparison of these two figures reveals the importance of
our assumptions about fracture shape. As shown in the lower figure,
inverting reflectivity data acquired from a fractured medium with
asymmetric fractures will yield erroneous results for fracture param-
eters, if the data are inverted for rotationally invariant fracture
parameters.
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the effects of incorrect assumptions about fractures on the inversion
results.
Modeled WAZ reflectivity data are shown in Figure 6a. Noisy

reflectivity with S∕N ¼ 2, which was used for inversion, is shown
in Figure 6b. Inversion results for the two cases discussed above
(assuming that the background unfractured rock properties are
known exactly) are shown in Figure 7. Figure 7a shows the inver-
sion results for asymmetric fracture parameters using reflectivity
data computed with the theory of such fractures (S∕N ¼ 2).
Figure 7b shows the results of inversion for the fracture compliance
matrices using the same reflectivity data as used in the upper figure,
but with the assumption that fractures have rotationally invariant
shear compliance (wrong assumption). Successful inversion of a
particular matrix component is indicated by a small departure from
the diagonal line (perfect inversion), compared to the distance
from the origin. By this measure, many of the components in
case 1 (Figure 7a) are successfully inverted. However, in case 2

(Figure 7b), the incorrect assumption of fracture symmetry intro-
duces large errors in prediction of most α and β components.
Figure 8 shows the results of inversion (Monte Carlo simulation)

for the components of the compliance matrices and also for the
direction of the fast-shear-wave polarization, when there is a 15%
uncertainty in the background unfractured rock properties. This
figure shows the results of inversion of asymmetric fracture param-
eters using noisy WAZ data forward-modeled using the theory of
asymmetric fractures.Where the various experiments show large var-
iation, it follows that any conclusion concerning that AVOA param-
eter is critically dependent on uncertainty in the (azimuthally isotro-
pic) background parameters. This is the case for most of the fracture
compliance components, although the direction of fast-shear-wave
polarization is robust. It seems intuitively clear that this direc-
tion is closely related to the direction of maximum hydraulic
permeability.

CONCLUSIONS

In this work, a theory for modeling reservoirs
with arbitrary number of vertical asymmetric frac-
ture sets is developed and tested by inversion of
synthetic PP AVOA data that requires no a priori
knowledge about fracture orientations. It was
shown that if the parameters defining the VTI
background are known, then several components
of matrices that describe fracture properties, for
media with monoclinic or orthorhombic sym-
metry (which can take into account the VTI
background and multiple fracture sets), can be in-
verted reliably. If the parameters defining the
background are uncertain, the reliability of
the fracture parameters obtained by inversion is
reduced significantly. However, a reliable estima-
tion of the principal axes appears possible.
The previous approach that considered rota-

tionally invariant fractures, was generalized for
rotationally varying (asymmetric) vertical frac-
tures. This generalization introduces another
second-rank tensor, κij, the magnitude of which
is directly related to the asymmetry of the
fractures.
Because the elastic properties of background

media without fractures do not cause azimuthal
changes in AVOA data, due to the different nature
of these properties compared to components of
the fracture compliance matrices (which cause azi-
muthalanomalies),simultaneousinversionfor these
twodifferent properties requires further constraints.
This work does not require a priori knowledge

about the number and the direction of fracture
sets. After inversion, nothing can be said about
the number of fracture sets and the direction
of individual fracture sets without further
assumptions. However, inversion results for the
fracture tensors give the most compliant orienta-
tion in the fractured medium. If there is a priori
knowledge about the number of fracture sets, one
might be able to predict the fracture orientations.
As an example, if we know there is one set of

Figure 8. Monte Carlo simulation results using synthetic WAZ data (asymmetric frac-
tures) with S∕N ¼ 2. Dashed lines show the actual values of the fracture compliance
matrix components obtained by forward modeling, and thin solid lines show the average
values obtained from 50 inversions. The components of the fracture compliance matrices
are made dimensionless by multiplying by the shear modulus of the background med-
ium. The vertical axes show the magnitude of the components of dimensionless fracture
compliance matrices, clipped at �1 (for the fast-shear-wave polarization plot, the ver-
tical axes show the direction of polarization in degrees). The horizontal axes show the
experiment number.
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fractures in the reservoir, in theory, their direction can be inverted
uniquely.
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APPENDIX A

ARBITRARILY ORIENTED ASYMMETRIC
FRACTURES

Following and extending Kachanov (1992), the fracture compli-
ance matrix for a planar fracture with normal n and principal axes s
and t in the plane of the fracture can be written as

B ¼ BNnnþ BSssþ BTtt; (A-1)

where s and t are unit vectors in the principal directions in the frac-
ture plane. In component form,

Bij ¼ BNninj þ BSsisj þ BTtitj: (A-2)

The previous treatment, described above in this paper, is limited
to vertical fractures, because these constitute a large fraction of the
cases of interest, and the algebra is simpler than the general case.
Here we treat the general case. To find the general form of the ad-
ditional compliance when fractures are not aligned with any of the
coordinate axes (see Figure A-1), one can use tensor rotation (or
Bond transformation) with Euler angles θ around the y-axis, fol-
lowed by a ϕ rotation around the new z-axis.
Using the method of Sayers and Kachanov (1995), the contribu-

tion ΔSijkl of the fractures to the elastic compliance Sijkl is given by

ΔSijkl ¼
1

V

X
r

�
BðrÞ
N nðrÞi nðrÞj nðrÞk nðrÞl þBðrÞ

S

4
ðsðrÞi sðrÞk nðrÞj nðrÞl

þ sðrÞi sðrÞl nðrÞj nðrÞk þ sðrÞj sðrÞk nðrÞi nðrÞl þ sðrÞj sðrÞl nðrÞi nðrÞk Þ

þBðrÞ
T

4
ðtðrÞi tðrÞk nðrÞj nðrÞl þ tðrÞi tðrÞl nðrÞj nðrÞk þ tðrÞj tðrÞk nðrÞi nðrÞl

þ tðrÞj tðrÞl nðrÞi nðrÞk Þ
�
AðrÞ: (A-3)

Using the identity nnþ ssþ tt ¼ I, equation A-3 can be
written as

ΔSijkl ¼
1

V

X
r

�
ðBðrÞ

N − BðrÞ
T ÞnðrÞi nðrÞj nðrÞk nðrÞl

þ ðBðrÞ
S − BðrÞ

T Þ
4

ðsðrÞi sðrÞk nðrÞj nðrÞl þ sðrÞi sðrÞl nðrÞj nðrÞk

þ sðrÞj sðrÞk nðrÞi nðrÞl þ sðrÞj sðrÞl nðrÞi nðrÞk Þ

þ BðrÞ
T

4
ðδiknðrÞj nðrÞl þ δiln

ðrÞ
j nðrÞk þ δjkn

ðrÞ
i nðrÞl

þ δjln
ðrÞ
i nðrÞk Þ

�
AðrÞ: (A-4)

APPENDIX B

GENERALIZED ANISOTROPY PARAMETERS

In terms of the specific compliance matrices, generalized aniso-
tropy parameters are defined as below (Far et al., 2012). It should be
noted that in these equations, Cij are the components of the stiffness
matrix of the VTI background (unfractured rock):

εx ¼ εþ −C2
11ðα11 þ β1111Þ − C2

12ðα22 þ β2222Þ − 2C11C12β1122
2C33

;

(B-1)

εy ¼ εþ −C2
12ðα11 þ β1111Þ − C2

11ðα22 þ β2222Þ − 2C11C12β1122
2C33

;

(B-2)

εz ¼
−C2

13ðα11 þ β1111 þ α22 þ β2222 þ 2β1122Þ
2C33

; (B-3)

ε16 ¼ −
C66ð2C11β1112 þ 2C12β1222 þ α12ðC11 þ C12ÞÞ

C33

;

(B-4)

ε26 ¼ −
C66ð2C12β1112 þ 2C11β1222 þ α12ðC11 þ C12ÞÞ

C33

;

(B-5)Figure A-1. General situation for an asymmetric fracture in which
the fracture is not aligned with any of the coordinate axes.
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ε45 ¼
−C2

45ðα12 þ κ12Þ
C55

; (B-6)

δx ¼ δw

þ−C13½C11ðα11 þ β1111ÞþC12ðα22 þ β2222Þþ β1122ðC11 þC12Þ�− 2C2
55ðα11 þ κ11Þ

C33

;

(B-7)

δy ¼ δw

þ−C13½C12ðα11 þ β1111ÞþC11ðα22 þ β2222Þþ β1122ðC11 þC12Þ�− 2C2
55ðα22 þ κ22Þ

C33

;

(B-8)

δz ¼ 2ε

þC11C12ðα11 þ β1111 þα22 þ β2222Þ− β1122ðC11 þC12Þ− 2C2
66ðα11 þ α22 þ 4β1122Þ

C33

;

(B-9)

γx ¼ −
C55ðα11 þ κ11Þ

2
; (B-10)

γy ¼ −
C55ðα22 þ κ22Þ

2
; (B-11)

χz ¼
−2C66C13ðα12 þ β1112 þ β1222Þ − 2C2

55ðα12 þ κ12Þ
C33

:

(B-12)

APPENDIX C

SENSITIVITY EQUATIONS

Equation 22 can be rewritten by collecting the terms that are mul-
tiplied by each of the fracture parameters. This is done by keeping
one fracture parameter (components of α, κ, and β) at a time and
zeroing out the other parameters and collecting the terms that are
multiplied by that nonzero parameter. These sets of coefficients
(Fijkl or Fij) are called sensitivities. Sensitivities in equation 23
obtained as

Fα
11ðθ;ϕÞ ¼

1

μ

�
−

C2
13

4C33

þ
�
C2
13

2C33

þ
�
4C55V̄2

S

V̄2
P

−
2C2

55 þC11C13

C33

�
cos2ðϕÞ

−
C12C13 sin

2ðϕÞ
C33

�
1

2
sin2ðθÞ

þ
�
−
C2
12 sin

4ðϕÞþC2
11 cos

4ðϕÞþ ðC2
11 þC2

12Þsin2ðϕÞcos2ðϕÞ
2C33

�

×
1

2
sin2ðθÞtan2ðθÞ

�
; (C-1)

Fα
12ðθ;ϕÞ¼

1

μ

��
4C55V̄2

S

V̄2
P

−
2C2

55þ2C13C66

C33

�
sinðϕÞcosðϕÞsin2ðθÞ

þ
�
−
ðC11þC12ÞC66

C33

�
sinðϕÞcosðϕÞsin2ðθÞtan2ðθÞ

�
;

(C-2)

Fα
22ðθ;ϕÞ ¼

1

μ

�
−

C2
13

4C33

þ
�
C2
13

2C33

−
C12C13

C33

�
4C55V̄2

S

V̄2
P

þ−C11C13 −C2
55

C33

�
cos2ðϕÞ

�

×
1

2
sin2ðϕÞsin2ðθÞ

þ
�
−
C2
12sin

4ðϕÞþC2
11cos

4ðϕÞþ ðC2
11 þC2

12Þsin2ðϕÞcos2ðϕÞ
2C33

�

×
1

2
sin2ðθÞtan2ðθÞ

�
; (C-3)

Fκ
11ðθ;ϕÞ ¼

1

μ

�
1

2

�
4C55V̄2

S

V̄2
P

−
2C2

55

C33

�
sin2ðθÞcos2ðϕÞ

�
;

(C-4)

Fκ
12ðθ;ϕÞ ¼

1

μ

��
4C55V̄2

S

V̄2
P

−
2C2

55

C33

�
sinðϕÞ cosðϕÞsin2ðθÞ

�
;

(C-5)

Fκ
22ðθ;ϕÞ ¼

1

μ

�
1

2

�
4C55V̄2

S

V̄2
P

þ −2C2
55

C33

�
sin2ðϕÞsin2ðθÞ

�
;

(C-6)

Fβ
1111ðθ;ϕÞ ¼

1

μ

�
−

C2
13

4C33

þ 1

2

�
C2
13

2C33

−
C12C13sin

2ðϕÞ
C33

−
C11C13cos

2ðϕÞ
C33

�
sin2ðθÞ

−
1

2

�ðC11cos
2ðϕÞ þ C12sin

2ðϕÞÞ2
2C33

�

× sin2ðθÞtan2ðθÞ
�
; (C-7)

Fβ
1112ðθ;ϕÞ ¼

1

μ

��
−
2C66ðC12sin

2ðϕÞ þ C11cos
2ðϕÞÞ

C33

�

× sinðϕÞ cosðϕÞsin2ðθÞtan2ðθÞ

−
2C13C66

C33

sinðϕÞ cosðϕÞsin2ðθÞ
�
; (C-8)

Fβ
1122ðθ;ϕÞ¼

1

μ

�
−

C2
13

2C33

−
1

2

�
C13ðC11þC12−C13Þ

C33

�
sin2ðθÞ

þ
�
−
C11C12ðsin4ðϕÞþcos4ðϕÞ−4sin2ðϕÞcos2ðϕÞÞþ3ðC2

11þC2
12Þ

C33

�

×
1

2
sin2ðθÞtan2ðθÞ

�
; (C-9)

Fβ
1222ðθ;ϕÞ ¼

1

μ

�
−
2C13C66

C33

sinðϕÞ cosðϕÞsin2ðθÞ

þ
�
−
2C66ðC11 sin

2ðϕÞ þ C12 cos
2ðϕÞÞ

C33

�

× sinðϕÞ cosðϕÞsin2ðθÞtan2ðθÞ
�
; (C-10)
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Fβ
2222ðθ;ϕÞ ¼

1

μ

�
−

C2
13

4C33

þ 1

2

�
−
C11C13 sin

2ðϕÞ
C33

−
C12C13 cos

2ðϕÞ
C33

þ C2
13

2C33

�
sin2ðθÞ

þ 1

2

�
−
ðC12 cos

2ðϕÞ þ C11 sin
2ðϕÞÞ2

2C33

�

× sin2ðθÞtan2ðθÞ
�
: (C-11)
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