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ABSTRACT
P-wave seismic reflection data, with variable offset and azimuth, acquired over a
fractured reservoir can theoretically be inverted for the effective compliance of the
fractures. The total effective compliance of a fractured rock, which is described using
second- and fourth-rank fracture tensors, can be represented as background compli-
ance plus additional compliance due to fractures. Assuming monoclinic or orthotropic
symmetry (which take into account layering and multiple fracture sets), the compo-
nents of the effective second- and fourth-rank fracture compliance tensors can be used
as attributes related to the characteristics of the fractured medium. Synthetic tests in-
dicate that using a priori knowledge of the properties of the unfractured medium, the
inversion can be effective on noisy data, with S/N on the order of 2. Monte Carlo
simulation was used to test the effect of uncertainties in the a priori information about
elastic properties of unfractured rock. Two cases were considered with Wide Azimuth
(WAZ) and Narrow Azimuth (NAZ) reflection data and assuming that the fractures
have rotationally invariant shear compliance. The relative errors in determination of
the components of the fourth-rank tensor are substantially larger compared to the
second-rank tensor, under the same assumptions.

Elastic properties of background media, consisting in horizontal layers without
fractures, do not cause azimuthal changes in the reflection coefficient variation with
offset. Thus, due to the different nature of these properties compared to fracture
tensor components (which cause azimuthal anomalies), simultaneous inversion for
background isotropic properties and fracture tensor components requires additional
constraints.

Singular value decomposition (SVD) and resolution matrix analysis can be used to
predict fracture inversion efficacy before acquiring data. Therefore, they can be used
to determine the optimal seismic survey design for inversion of fracture parameters.
However, results of synthetic inversion in some cases are not consistent with resolu-
tion matrix results and resolution matrix results are reliable only after one can see a
consistent and robust behaviour in inversion of synthetics with different noise levels.

Key words: Fractures, AVOA, Reflection coefficient, Inversion, Singular value de-
composition.
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INTRODUCTIO N

Natural and induced fractures in reservoirs play an impor-
tant role in determining fluid flow during production and
knowledge of the orientation and density of fractures is useful
to optimize production from fractured reservoirs (e.g., Reiss
1980; Nelson 1985). Areas of high-fracture density may rep-
resent zones of high permeability, therefore locating wells in
these areas may be important. Fractures usually show pre-
ferred orientations and this may result in significant perme-
ability anisotropy in the reservoir. It is important for optimum
drainage that producers should be more closely spaced along
the direction of minimum permeability than along the direc-
tion of maximum permeability and the azimuthal orientation
of deviated wells should be chosen to maximize production
taking into account the orientation of fractures (Sayers 2009).

Seismic anisotropy is defined as the dependence of seismic
velocity upon angle. Seismic velocity anisotropy can be caused
by different factors, such as rock fabric, grain-scale microc-
racks, rock layering and aligned fractures at all scales, pro-
vided that the characteristic dimensions of these features are
small relative to the seismic wavelength (Worthington 2008).
As a result, P-waves propagating parallel to fractures will
be faster than those propagating perpendicular to fractures
(Fig. 1).

The use of seismic waves to determine the orientation of
fractures has received much attention. For example, Lynn

Figure 1 Reflection from a fractured layer with a single set of parallel
vertical fractures for acquisition parallel and perpendicular to the
fractures

et al. (1994) used the azimuthal variation in the reflection
amplitude of seismic P-waves to characterize fractured reser-
voirs (see also Eftekharifar and Sayers 2011a, b). Reflection
amplitudes have advantages over seismic velocities for char-
acterizing fractured reservoirs because they have higher ver-
tical resolution. However, the interpretation of variations in
reflection amplitude requires a model of sufficient complex-
ity to allow the measured change in reflection amplitude to
be inverted correctly for the characteristics of the fractured
reservoir (Sayers 2009).

Current models used to invert the seismic response of frac-
tured reservoirs often make simplified assumptions that pre-
vent fractured reservoirs from being characterized correctly.
Many models assume a single set of perfectly aligned frac-
tures (e.g., Mallick, Chambers and Gonzalez 1996; Sayers
and Rickett 1997; Rüger 1997). But consider a vertically frac-
tured reservoir containing a large number of fractures of the
same type with normals that are isotropically distributed in
the horizontal plane. For this example, there will be little or
no variation in the reflection coefficient with azimuth and
an interpretation of the reflection amplitude-versus-azimuth
curve using an assumption of a single set of aligned frac-
tures would predict incorrectly that the fracture density is zero
(Sayers 2009). Hence it is important to consider the possibil-
ity that reservoirs contain several sets of fractures with vari-
able orientation within a given fracture set, as illustrated in
Fig. 2 (see, for example, Sayers 1998; Sayers and Dean 2001;
Far 2011).

Figure 2 Orthotropic (top) and monoclinic (bottom) symmetries in
fractured sandstone, Arches National Monument.
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The simple model of Horizontally Transverse Isotropic
(HTI) symmetry, which assumes one set of aligned vertical
fractures (with rotationally invariant shear compliance) em-
bedded in an otherwise isotropic background is misleading
for another reason. In the HTI model, horizontal layering of
sediments, leading to a variation of velocity with polar angle,
is ignored. Hence HTI is not a suitable model in sedimentary
basins, where layering is ubiquitous and no fractures can be
presumed to lie within an ‘otherwise isotropic background’,
although it may be useful in the igneous crust, for which it
was originally proposed (e.g., Crampin 1984).

In this work, the linear slip theory (see below) is used to
describe the relation between stress and fracture strain, as
expressed by the specific compliances of the fractures. This
theory describes fractures using normal and tangential spe-
cific compliances of fractures, without detailed assumptions
concerning the microgeometry of the fractures. It is assumed
that the specific shear compliance of fractures is rotationally
invariant around the normal to the fractures (this work will
be generalized in a future paper to the case of rotationally-
dependent shear compliance, enabling the analysis of joints,
which are much longer horizontally than vertically.) Thom-
sen (1995) showed the effect of frequency and squirt flow
on elastic properties of fractured rocks, including their in-
teraction with equant (non-fracture) porosity. At higher fre-
quencies, fluid-filled fractures tend to be stiffer than at lower
frequencies. Based on data from several authors, Worthing-
ton (2008) showed that fracture specific compliances are di-
rectly related to fracture dimension. The theory developed by
Kachanov (1980) and Sayers and Kachanov (1991, 1995) is
used for effective medium modelling of media with fractures
having rotationally invariant shear compliance. Kachanov
(1980) applied this approach to modelling permeability
also.

Fracture characterization using surface seismic data de-
mands wide azimuth surveys. Due to the high cost of wide
azimuth seismic data acquisition, the determination of az-
imuth/offset characteristics in such data, for the task of frac-
ture modelling, becomes very important, as does optimization
of the acquisition for revealing such characteristics. This op-
timization will be demonstrated using Singular Value Decom-
position (SVD) and inversion of synthetic Amplitude Versus
Offset and Azimuth (AVOA) data. Synthetic AVOA data for
differently oriented vertical fractures are analysed, in order to
identify which parameter combinations are well-resolved by
various experimental geometries. Synthetic reflectivity data
are also used to invert for the components of the additional
effective fracture compliance tensor. Inversion results are in

general consistent with resolution matrix results with differ-
ent noise levels, proving the usefulness of SVD for this inverse
problem.

LINEAR S LIP CONDITION

The small vector difference (across a fracture) in the displace-
ment field u is assumed to depend linearly on the traction
vector t. This dependence may be assumed to be real and
frequency independent, corresponding to an elastic spring
condition, or it may be assumed to be complex and fre-
quency dependent (Jones and Whittier 1967; Schoenberg
1980).

For a smoothly curved surface between two elastic media,
assume a coordinate system with x1 and x3 in directions tan-
gential to the local fracture plane and x2 perpendicular to
that fracture plane. We will assume here that the fractures
are vertical, with orientations in the horizontal plane to be
determined by analysis. Let u denote displacement (see Fig. 3)
and

�u = uR − uL, (1)

be the difference, or discontinuity of displacement, between
the right (R) fracture face and left (L) fracture face. The time
dependency is suppressed. The traction vector t we take as
the second row of the stress tensor, with components σ 21, σ 22

and σ 23, which are the forces per unit area that the material
on the +x2 side of the interface exerts on the −x2 side. It
is assumed, following Schoenberg (1980), that the traction is

Figure 3 The normal and tangential displacements at the face of the
fracture are denoted by u3, u1 and u2. The normal and tangential
components of the displacement discontinuity at the fracture are given
by �ui = uR

i − uL
i and are related to the normal and shear tractions.
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linearly dependent on the displacement slip:

t(�u) ≈ k�u, (2)

where k is the specific stiffness matrix.
If the specific stiffness matrix k is required to be invariant

with respect to inversion of x2, it can be shown (Schoenberg
1980) that off-diagonal terms k21, k12, k32 and k23, between
the normal and tangential directions, must be zero. If there is
rotational symmetry for shear compliance around the x2 axis,
it can be shown that k13 = k31 = 0, k11 = k33 = kT and k22 =
kN (Schoenberg 1980).

It is convenient to characterize compliances instead of stiff-
nesses, which are the inverse of a compliance matrix. One can
write (Kachanov 1980):

�u =

⎡
⎢⎢⎣

BT 0 0

0 BN 0

0 0 BT

⎤
⎥⎥⎦ t, (3)

where BN = kN
−1 and BT = kT

−1 are the normal and tangential
specific fracture compliances respectively and their dimension
is length/stress. BN gives the displacement discontinuity in the
direction normal to the fracture for a unit normal traction and
BT gives the displacement discontinuity parallel to the fracture
plane for unit shear traction (see Fig. 3). If there are multiple
fractures, then the effective compliances of a given fracture
will be affected by the presence of the other fractures. They
also depend on the fluid content and fracture density. In index
notation, equation (3) is:

�ui = Bi j tj , (4)

with B11 = B33 = BT and B22 = BN. The specific compli-
ance tensor B above is written for the case of fractures with
rotationally invariant shear compliance, normal to the x2 di-
rection; for a fracture with arbitrary orientation, it may be
written compactly as (Kachanov 1980):

Bi j = BNni n j + BT(δi j − ni n j ). (5)

The boundary conditions shown in equation (4) were first
used by Jones and Whittier (1967) for modelling of wave
propagation through a flexibly bonded interface by allow-
ing both slip and separation. The vanishing of either or both
of these specific compliances leads to perfectly bonded in-
terface conditions. Real elastic parameters may be general-
ized to complex frequency- dependent viscoelastic parameters,
therefore linear viscoelastic interfaces can be modelled as well
(Schoenberg 1980).

Schoenberg’s linear slip theory was originally developed for
a single set of fractures (with rotationally invariant shear com-

pliance) embedded in isotropic host rock and later was ex-
tended to several fracture sets (see, for example, Schoenberg
and Muir 1989; Schoenberg and Sayers, 1995) and also to
anisotropic backgrounds (e.g., Sayers and Kachanov 1991,
1995; Helbig 1994; Schoenberg and Sayers 1995).

A R B I T R A R Y V E R T I C A L F R A C T U R E S

In an elastic medium that contains an arbitrary number of sets
of fractures with arbitrary orientation distribution, using the
divergence theorem and Hooke’s law, it can be shown (Hill
1963; Sayers and Kachanov 1995) that the elastic compliance
tensor of the fractured medium can be written in the following
form:

Si jkl = S0
i jkl + �Si jkl , (6)

where S0 is the compliance matrix of the medium (including
the effects of pores, cracks and stress except for those fractures
explicitly included in �S).

Following Nichols, Muir and Schoenberg (1989), the addi-
tional (effective) compliance matrix �S, for n sets of aligned
fractures can be written as:

�S =
n∑

q=1

�Sq, (7)

where �Sq is the additional effective compliance matrix of the
qth set of aligned fractures in the presence of the other fracture
sets. Implicitly, each of these effective fracture compliances
depends upon the rest of the rock, specifically including the
presence, location, size and orientation of the other fractures
and pores (including their intersections, if liquid-filled).

Sayers and Kachanov (1991, 1995) derived the effective
additional compliance matrix due to fractures with rotation-
ally invariant shear compliance. Using equations (6)–(8), the
effective excess compliance �Sijkl due to the presence of the
fractures can be written as:

�Si jkl = 1
4

(δikα jl + δilα jk + δ jkαil + δ jlαik) + βi jkl . (8)

Here, δij is the Krönecker delta, αij is a second-rank tensor and
β ijkl is a fourth-rank tensor defined by:

αi j = 1
V

∑
r

B(r )
T n(r )

i n(r )
j A(r ), (9)

βi jkl = 1
V

∑
r

(
B(r )

N − B(r )
T

)
n(r )

i n(r )
j n(r )

k n(r )
l A(r ), (10)

where the sum is over all fractures in volume V. Variable ni
(r)

is the ith component of the normal to the rth fracture and A(r)
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Figure 4 Horizontal section through volume V containing N vertical
fractures, where the rth fracture has area A(r) and normal n(r).

is the area of the rth fracture (see Fig. 4). Note that αij and β ijkl

are both invariant to all permutations of the indices.
For the case of gas-filled or ‘dry’ fractures, since normal and

shear compliance of the fractures are almost equal (see Sayers
and Kachanov 1995), the effect of the fourth-rank tensor β can
be neglected (see equation (10)) in this case. If the fractures
are filled with liquid and if the volume V contains equant
porosity in addition to fracture porosity, there may be fluid
flow between fractures and equant pores (Thomsen 1995).
This effect helps to determine the values of the specific fracture
compliance, particularly BN.

Since specific compliances (Bij) depend on the fracture in-
teraction, fluid content, etc., the excess compliance matrix �S
(e.g., α and/or β) will also depend on these factors. Thus, an
effective fracture compliance can be defined that implicitly
takes into account all the interactions between fractures. We
can invert this effective fracture compliance from azimuthally
varying surface PP- seismic data (see inversion results, below).
However it should be noted that interpretations of the inver-

sion results for implicit effective compliances cannot be unique
and one can only draw conclusions about relative effects of
the fractures (as opposed to absolute effects).

The discussion above does not mean that the effect of frac-
tures is ‘additive’, because in summing fracture compliances,
all the compliances of individual fractures depend implicitly
on the existence of the other fractures, so if we double the
number of fractures, the total fracture compliance does not
double, since now all of the original fractures have different
effective compliances and the new fractures similarly interact
with the originals.

Some numerical studies have reported that fracture interac-
tions do not have a significant effect on the total elastic be-
haviour of dry fractured media (e.g., Grechka and Kachanov
2006). These studies had the following assumptions:

(1) They assumed zero fracture volume
(2) The concentrations and crack densities were dilute
(3) They ignored microfractures and porosity in the host rock
between macrofractures
(4) They ignored fluid effects
(5) They considered very specific geometries.

In the formulation presented here, fracture compliances are
taken to be ‘effective’ (in the presence of other fractures) and
thus the assumption of non-interaction is not required.

If there is only a single set of perfectly aligned vertical frac-
tures, equations (9) and (10) become

α = NV ĀB̄T

⎡
⎢⎢⎣

sin2 ϕ cos ϕ sin ϕ 0

cos ϕ sin ϕ cos2 ϕ 0

0 0 0

⎤
⎥⎥⎦ , (11)

β = NV Ā(B̄N − B̄T)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sin4 ϕ sin2 ϕ cos2 ϕ 0 0 0 2 sin3 ϕ cos ϕ

sin2 ϕ cos2 ϕ cos4 ϕ 0 0 0 2 sin ϕ cos3 ϕ

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

2 sin3 ϕ cos ϕ 2 sin ϕ cos3 ϕ 0 0 0 4 sin2 ϕ cos2 ϕ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (12)

where NV is the number of fractures per unit volume, Ā is
the average area of the fractures in the set, B̄T and B̄N are
the (area-weighted) average specific tangential and normal
compliances and ϕ is the azimuthal angle between the fracture
strike and the survey 1-axis. The factors of 2 and 4 in column
6 arise from the fact that for compliances (including these
additional compliances), as opposed to stiffnesses,

β16 = 2β1112, β26 = 2β2212, β66 = 4β1212, (13)
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according to the Voigt two-index notation. It is shown in
the Appendix A that, if the background medium is isotropic,
this case yields ‘HTI’ symmetry, which as discussed above
is not a suitable approximation in sedimentary basins. If the
background medium is polar anisotropic, this case yields or-
thotropic symmetry.

If there are two sets of perfectly aligned vertical fractures,
oriented orthogonally, then equations (9) and (10) become:

α = NV1 Ā1 B̄T1

⎡
⎢⎢⎣

sin2 ϕ1 cos ϕ1 sin ϕ1 0

cos ϕ1 sin ϕ1 cos2 ϕ1 0

0 0 0

⎤
⎥⎥⎦

+ NV2 Ā2 B̄T2

⎡
⎢⎢⎣

cos2 ϕ1 − sin ϕ1 cos ϕ1 0

− sin ϕ1 cos ϕ1 sin2 ϕ1 0

0 0 0

⎤
⎥⎥⎦ ,

(14)

β = NV1 Ā1(B̄N1 − B̄T1)

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sin4 ϕ1 sin2 ϕ1 cos2 ϕ1 0 0 0 2 sin3 ϕ1 cos ϕ1

sin2 ϕ1 cos2 ϕ1 cos4 ϕ1 0 0 0 2 sin ϕ1 cos3 ϕ1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

2 sin3 ϕ1 cos ϕ1 2 sin ϕ1 cos3 ϕ1 0 0 0 4 sin2 ϕ1 cos2 ϕ1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ NV2 Ā2(B̄N2 − B̄T2)

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos4 ϕ1 cos2 ϕ1 sin2 ϕ1 0 0 0 −2 cos3 ϕ1 sin ϕ1

cos2 ϕ1 sin2 ϕ1 sin4 ϕ1 0 0 0 −2 cos ϕ1 sin3 ϕ1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

−2 cos3 ϕ1 sin ϕ1 −2 cos ϕ1 sin3 ϕ1 0 0 0 4 cos2 ϕ1 sin2 ϕ1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(15)

where ϕ1 is the azimuthal angle between the fracture set with
label 1 and the survey 1-axis. It is shown in Appendix A that
this results in orthotropic symmetry.

If the two fracture sets are not orthogonal but are per-
fectly aligned (within each set), then equations (14) and (15)
become,

α = NV1 Ā1 B̄T1

⎡
⎢⎢⎣

sin2 ϕ1 cos ϕ1 sin ϕ1 0

cos ϕ1 sin ϕ1 cos2 ϕ1 0

0 0 0

⎤
⎥⎥⎦

+ NV2 Ā2 B̄T2

⎡
⎢⎢⎣

sin2 ϕ2 cos ϕ2 sin ϕ2 0

cos ϕ2 sin ϕ2 cos2 ϕ2 0

0 0 0

⎤
⎥⎥⎦ ,

(16)

β = NV1 Ā1(B̄N1 − B̄T1)

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sin4 ϕ1 sin2 ϕ1 cos2 ϕ1 0 0 0 2 sin3 ϕ1 cos ϕ1

sin2 ϕ1 cos2 ϕ1 cos4 ϕ1 0 0 0 2 sin ϕ1 cos3 ϕ1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

2 sin3 ϕ1 cos ϕ1 2 sin ϕ1 cos3 ϕ1 0 0 0 4 sin2 ϕ1 cos2 ϕ1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ NV2 Ā2(B̄N2 − B̄T2)

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sin4 ϕ2 sin2 ϕ2 cos2 ϕ2 0 0 0 2 sin3 ϕ2 cos ϕ2

0 cos4 ϕ2 0 0 0 2 sin ϕ2 cos3 ϕ2

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

2 sin3 ϕ2 cos ϕ2 2 sin ϕ2 cos3 ϕ2 0 0 0 4 sin2 ϕ2 cos2 ϕ2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(17)

where ϕ2 is the azimuthal angle to the fracture set with label
2. In each of these special cases, there is a corresponding re-
duction in the number of degrees of freedom; in what follows
we consider the general case, with 8 degrees of freedom (3
elements of α and 5 of β).

If the background medium is isotropic or transversely
isotropic and there are at least two non-orthogonal vertical
fracture sets, this leads to monoclinic symmetry of the frac-
tured rock, with a stiffness matrix given by:

CMono. =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C11 C12 C13 0 0 C16

C12 C22 C23 0 0 C26

C13 C23 C33 0 0 C36

0 0 0 C44 C45 0

0 0 0 C45 C55 0

C16 C26 C36 0 0 C66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (18)

and a compliance matrix of similar form. We can choose axes
x1 and x2 such that C45 = 0; this is the principal coordinate sys-
tem. In the present context, where the azimuthal anisotropy is
caused by fractures, this choice of coordinate system diagonal-
izes αij (Sayers 1998). Therefore, for a vertically propagating
shear wave, the fast and slow polarization directions will be in
the direction of x1 and x2, which coincide with the principal
directions of αij. For a coordinate system not so aligned, the
azimuth ϕS1 of the fast vertical shear wave is given by (Sayers
1998):

C© 2013 European Association of Geoscientists & Engineers, Geophysical Prospecting, 1–21
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tan(2ϕS1) = 2α12/(α11 − α22). (19)

This angle may be determined in the field, from the polar-
ization of the fast shear wave measured in a well or a vertical
seismic profile.

An important issue in fracture modelling for seismic ex-
ploration is the choice of coordinate system. In real world
problems, the azimuthal orientation of fractures is usually un-
known. Therefore, the problem of characterizing fractured
reservoirs should be analysed without assuming that these
orientations are known. Taking into account the generality
of coordinate systems, the fracture compliance matrix in this
work can be categorized into 6 classes by considering the fol-
lowing criteria:

(1) Isotropic or polar anisotropic (‘VTI’) background
(2) One or more sets of fractures, not necessarily perfectly
aligned within any set
(3) Alignment or non-alignment of fractures with the coordi-
nate axes.

The effective compliance tensor Sijkl can be calculated using
equation (6). Since seismologists require the stiffness tensor
instead, when the fracture compliance �S is small, one can di-
rectly calculate the stiffness matrix using the additional com-
pliance due to fractures, �Sijkl and the background stiffness
matrix C0 (e.g., Sayers 2009):

C = C0 − C0 �S C0. (20)

We will assume a polar anisotropic background. An
isotropic background is a special case of this. In order to
maintain generality, each fracture is characterized by its ex-
cess compliance, not by its shape or size, which we do not
specify here.

The additional compliance, �S, due to two or more sets
of aligned vertical fractures, not aligned with the coordinate

system, has the form:

�S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α11 + β1111 β1122 0 0 0 α12 + 2β1112

β1122 α22 + β2222 0 0 0 α12 + 2β1222

0 0 0 0 0 0

0 0 0 α22 α12 0

0 0 0 α12 α11 0

α12 + 2β1112 α12 + 2β1222 0 0 0 α11 + α22 + 4β1122

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (21)

which is the same as equation (8), for this special case.

REFLECTIVITY AND G ENERALIZED
ANISOTROPY PARAMETERS

In this study, the elastic contrast between the overburden and
reservoir will be assumed to be small. In this situation, the
plane-wave P-wave reflection coefficient for a plane separating
media with arbitrary elastic symmetry with weak anisotropy
(WA) can be written in the form (Pšenčı́k and Martins 2001):

RP P (θ, φ) = Riso
P P (θ ) + 1

2
�εz + 1

2

[(
�δx − 8

Vs
2

Vp
2 �γx

)
cos2 φ

+
(

�δy − 8
Vs

2

Vp
2 �γy

)
sin2 φ

+ 2

(
�χz − 4

Vs
2

Vp
2 �ε45

)
cos φ sin φ − �εz

]
sin2 θ

+1
2

[�εx cos4 φ + �εy sin4 φ + �δz cos2 φ sin2 φ

+ 2(�ε16 cos2 φ + �ε26 sin2 φ) cos φ sin φ]

× sin2 θ tan2 θ, (22)

where Riso
P P (θ ) denotes the weak-contrast reflection coefficient

at an interface separating two slightly different isotropic media
and the generalized Thomsen anisotropy parameters (Thom-
sen 1986) are given by Pšenčı́k and Martins (2001) for each
medium:

δx = A13 + 2A55 − V2
P

V2
P

, δy = A23 + 2A44 − V2
P

V2
P

,

δz = A12 + 2A66 − V2
P

V2
P

, χz = A36 + 2A45

V2
P

, ε16 = A16

V2
P

,

ε26 = A26

V2
P

, ε45 = A45

V2
S

εx = A11 − V2
P

2V2
P

, εy = A22 − V2
P

2V2
P

, εz = A33 − V2
P

2V2
P

,

γx = A55 − V2
S

2V2
S

, γy = A44 − V2
S

2V2
S

, (23)
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Figure 5 Symmetry types considered for incident medium (polar) and
reservoir (monoclinic).

where VP and VS are the P- and S-wave velocities of the back-
ground isotropic medium, respectively and Aαβ = Cαβ /ρ are
the density-normalized elastic stiffness.

The differences (in equation (22)) across the plane in
anisotropic parameters are, for example, �εx = εlower

x − ε
upper
x .

For reflectivity modelling in this study, a two layer model
will be assumed, where the overburden is assumed to be polar
anisotropic and the underlying reservoir is assumed to consist
of different sets of fractures embedded in a different polar
anisotropic medium, see Fig. 5.

ROTATIONALL Y I N V A R I A N T FR A C T URES
W I T H V T I B A C K G R O U N D

If we have an arbitrary number of vertical fractures with ro-
tationally invariant shear compliance, in a polar anisotropic
background reservoir, yielding a stiffness matrix Cij, the gen-
eralized anisotropy parameters δx, δy, δz, χ z, εx, εy, εz, ε16, ε26,
ε45, γxand γy of the reservoir that were defined before (equa-
tions (23)), for an isotropic background, are given in terms of
the fracture tensors and VTI background normalized stiffness
matrix as:

δx = δw + �C f
13 + 2�C f

55

CVTI
33

, δy = δw + �C f
23 + 2�C f

44

CVTI
33

,

δz = 2ε + �C f
12 + 2�C f

66

CVTI
33

, χz = �C f
36 + 2�C f

45

CVTI
33

,

ε16 = �C f
16

CVTI
33

, ε26 = �C f
26

CVTI
33

, ε45 = �C f
45

CVTI
55

εx = ε + �C f
11

2CVTI
33

, εy = ε + �C f
22

2CVTI
33

, εz = �C f
33

2CVTI
33

,

γx = �C f
55

2CVTI
55

, γy = �C f
44

2CVTI
55

, (24)

where �Cf = −CVTI�SCVTI is the stiffness matrix due to
the fractures, with CVTI

i j being the components of the stiff-
ness matrix of the background VTI medium. δw is the fully
linearized version of Thomsen’s δ parameter, valid for weak
polar anisotropy:

δw ≡ CVTI
13 − (CVTI

33 − 2CVTI
55 )

CVTI
33

, (24a)

and ε is the standard VTI parameter defined by Thom-
sen (1986). The shear-wave VTI parameter γ does not
appear in this P-wave problem. In terms of the specific
compliance matrices, these parameters are presented in
Appendix B.

Substitution of expressions for the anisotropy parameters
in terms of αij and β ijkl into equation (22) allows the sensitiv-
ities of the result (to αij and β ijkl) to be determined, as func-
tions of background parameters and angular aperture. To do
this, we recast equation (22) (but with a polar anisotropic
background), using sensitivities Fij and Fijkl of RPP(θ ,ϕ) (de-
fined as the angle-dependent coefficients of the parameters in
equation (22)) as follows (Pšenčı́k and Martins 2001; Sayers
2009):

RP P (θ, φ) = Riso
P P (θ ) + Raniso.

P P (θ ) + F11(θ, φ)α11 + F12(θ, φ)α12

+ F22(θ, φ)α22 + F1111(θ, φ)β1111

+ F1112(θ, φ)β1112 + F1122(θ, φ)β1122

+ F1222(θ, φ)β1222 + F2222(θ, φ)β2222. (25)

Equations for sensitivities Fij and Fijkl are given in
Appendix C.

I N V E R S I O N OF FR A C T U R E P A R A M E T E R S
FROM SYNTHETIC AVOA D ATA

In this section we examine the accuracy of inversion for the
components of the effective additional compliance matrix
(or second- and fourth-rank fracture tensors) from synthetic
AVOA data. Synthetic plane-wave PP-reflection data are cal-
culated using known elastic parameters and equation (22).
Random noise (S/N = 2) is added. Two fracture azimuths are
assumed, at –30◦ and +50◦, with respect to the x1 direction;
this leads to monoclinic symmetry for the fractured medium.
The fracture sets have different fracture densities, with 70%
of the contribution to the trace of αij coming from one set
and 30% from the other set. Fracture compliances were cho-
sen to give an overall 10% vertical shear-wave splitting if all
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Figure 6 Wide and narrow azimuth data obtained using different acquisition parameters, with the long axis aligned along x1 (length units are
in metres).

fractures were parallel. For the examples considered here (gas
shale), two azimuth ranges are considered;

(1) Wide azimuth seismic data with Az = [0,90] and
(2) ‘Narrow azimuth’ data with Az = [0,45] at the farthest
offsets (see Fig. 6).

This choice of azimuths in the modelled NAZ survey obvi-
ously affects which particular elements of the specific compli-
ance tensors are well-resolved in the analysis below. The NAZ
survey shown in Fig. 6 has an aspect ratio of 0.5 whereas in
conventional towed-stream marine acquisition, this ratio may
lie between 0.04–0.1, which obviously is not suitable for de-
termining the azimuthal variations discussed herein.

These synthetic data are inverted assuming arbitrary sets of
vertical fractures with rotationally invariant shear compliance
embedded in a polar anisotropic background; hence we invert
only for the fracture compliance matrices α and β. The input
to the inversion is the reflectivity (as a function of the angles);
it is outside the scope of this work to deduce this reflectivity
from the amplitudes of received data, as a function of off-
set, where deduction involves many issues (e.g., propagation
effects and source-configuration effects) not considered here.
However, for the inversion, the azimuthally invariant parts of
the reflectivity,Riso

P P (θ ) and Raniso
P P (θ ) are assumed to be imper-

fectly known and the robustness of the azimuthal inversion to
this source of error is investigated below.

Depending on the extent of the fractured area and also
the survey design geometry, one can stack the seismic data
in different azimuth intervals to give an increase in fold and

signal-to-noise ratio (S/N) as required. In this work, the reflec-
tivity data are assumed to be sparse (assumed to be stacked in
intervals of 5 degrees). Therefore high-quality reflection data
are assumed to be available at 5 degree steps in azimuth and
2 degree steps in offset.

Results of inversion using synthetic reflectivity data with
S/N = 2 will be shown; the background media are based upon
reservoirs with published data in the literature. For analysing
the effect of uncertainty in elastic parameter assumptions and
also the effect of background media contrast, data with higher
S/N (S/N = 4) will be used, in order to extract meaningful con-
clusions that are less affected by random noise in reflectivity
data. For computing the synthetic reflectivity, fractures were
assumed to have rotationally invariant shear compliance and
it was assumed that BN/BT = 0.75, a reasonable value for
gas shales (Sayers and Kachanov 1995). This, along with the
additional trigonometric factors in β (c.f. equations (11) and
(12)), mean that the components of β will be much smaller
than those of α (these differences would not be so pronounced
for liquid-filled fractures).

Parameters given by Shan et al. (2010) for Woodford shale,
listed in Table 1, were used for the background media. It is
assumed that the upper Woodford, which overlies the reser-
voir, is not fractured and has VTI symmetry. Vertical elastic
parameters for the upper Woodford are listed in Table 1 and
its VTI anisotropy parameters are taken to be: ε = 0.1, δ =
0.1 and γ = 0.1. Shan et al. (2010) used these parameters for
forward modelling. Note that, since ε = δ, these values imply
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Table 1 Parameters for Woodford shale (Bayuk et al. 2009; Shan et al. 2010).

Woodford Shale Depth (km) Thickness (m) VPO [krn/s] VSO [km/s] VP0/VS0 Density (g/cc) ε δ γ

Upper ∼4 9.144 4.509 2.855 1.58 2.855 0.1 0.1 0.1
Middle ∼4 53.34 4.161 2.687 1.55 2.46 0.29 0.17 0.1

elliptical P-wave fronts, which is a special case, not necessar-
ily realistic, which leads to difficulties in converting reflection
arrival times to depths (Thomsen 1986). However, this does
not create any difficulties in this study.

It is also assumed that the middle Woodford is the reservoir
and has two sets of vertical and non-orthogonal fractures that
lead to monoclinic symmetry (see Fig. 5). Background elastic
parameters for the middle Woodford are again selected from
Table 1 but anisotropy parameters are chosen from Bayuk
et al. (2009) who reported anisotropy parameters for 3 sam-
ples from the Woodford shale that showed positive anellip-
ticity (i.e., ε-δ > 0). Since their measurements for different
samples agree with each other, background VTI anisotropy
parameters measured by Bayuk et al. (2009) were used for the
middle Woodford: ε = 0.29, δ = 0.17 and γ = 0.1. These VTI
parameters are not small, as strictly required by the present
theory but this should not affect the present conclusions con-
cerning azimuthal anisotropy, since any errors introduced by
the failure of the weak VTI approximation will have azimuthal
isotropy. The symmetries of the upper and the middle Wood-
ford are shown in Fig. 5.

The forward problem has the simple form

R = Fw, (26)

where R is a vector (of length N) containing all data (reflection
coefficients), w is a vector (of length M) that represents the
unknown parameters (components of the second- and fourth-
rank fracture tensors) and F is the N × M sensitivity matrix.
In this problem, M = 8. Inversion can be performed using
either simple matrix operations, or, more robustly, using the
conjugate gradient method that was used in this work. In the
first case, the solution can be obtained from

w = (F T F )−1 F T R. (27)

Moreover, since for the present AVOA inversion it is as-
sumed that the background (un-fractured) parameters are
known, statistical methods for inversion of elastic parameters
from post-stack 3D surface seismic data can be used (e.g., Far
2011). Since conventional seismic inversion for isotropic prop-
erties will have some error and uncertainty involved, Monte

Carlo simulation will be used to take into account the ef-
fects of high uncertainty, in the background isotropic and
anisotropic parameters, on the inversion results. In order to
take into account the uncertainty in the background parame-
ters, ‘correct’ synthetic reflection data R are computed using
constant VP0, VS0, ρ and Thomsen parameters (see Table 1).
Then 50 sets of randomly and independently generated VP0,
VS0, ρ and Thomsen parameters for the background medium,
with standard deviation equal to 15% of the reservoir elastic
parameters (see Fig. 7), are used to compute the ‘wrong’ co-
efficient matrices contained in F (equation (27) above). Fifty
inversions are performed using the ‘correct’ reflection coef-
ficient data and 50 ‘wrong’ coefficient matrices. In this way,
uncertainty is included in the matrix of coefficients or sensitiv-
ities. The red line shows the value of the ‘correct’ parameters
used for forward modelling.

Inversion should be preceded by a resolution matrix analy-
sis (Menke 1989) to determine the confidence in the inversion
for the fracture tensor components. Resolution matrix anal-
ysis is controlled by the seismic data acquisition geometry
and the background properties only and should be used to
determine an optimum seismic survey design. The resolution
matrix is Rm = V pV T

p where VP is a matrix (not to be con-
fused with the compressional velocity VP) composed of the
significant eigenvalues of FTF (see Far 2011 for more details).
The resolution matrix will be always a square matrix and the
magnitudes of its diagonal elements indicate how accurately
the inversion determines the corresponding unknown. Figures
8 and 9 show resolution matrices for the WAZ and NAZ
data used in this study. The diagonal elements of the matrix
represent the resolution of the fracture tensors. Hot colours
for diagonal elements imply better resolution than cooler
colours.

Singular values are shown at the bottom of figures. The
singular values, or s-numbers, are the square roots of the
eigenvalues of FTF. The singular values are non-negative
real numbers, usually listed in decreasing order (s1 > s2 >

s3 . . .). Singular values determine the degree of variation in
the matrix of coefficients. In order to obtain a meaningful
result from SVD and resolution matrix analysis, insignificant
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Figure 7 Distributions of randomly generated VP0, VS0, ρ and Thomsen parameters for Monte Carlo simulation. Red line shows the value of
parameters used for reflectivity modelling.

Figure 8 Resolution matrix for wide azimuth seismic data, Woodford shale (fractures with rotationally invariant shear compliance).

C© 2013 European Association of Geoscientists & Engineers, Geophysical Prospecting, 1–21



12 Mehdi E. Far et al.

Figure 9 Resolution matrix for narrow azimuth seismic data, Woodford shale (fractures with rotationally invariant shear compliance).

Figure 10 Reflection coefficient plots for the WAZ case showing noise-free reflectivity (left) and noisy reflectivity with S/N = 2 (right, used for
inversion), with 5 degree stacking intervals.

singular values must be ignored. Determining the right num-
ber of insignificant singular values is not always simple. For
real world problems, a reliable number can be found by in-
version of synthetics and comparing the inversion results to

the resolution matrix (as was done in this work). Based on
experience from this work, there is no rule of thumb for de-
termining the number of insignificant singular values and this
number must be determined by inversion of synthetics and by
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Figure 11 Inversion results of fracture tensors using synthetic reflec-
tivity data with S/N = 2 for the wide azimuth data; correlation co-
efficient = 98.9%. Vertical axes show the actual normalized fracture
tensor values and horizontal axes show the inverted values of the ten-
sors. The components of the second- and fourth-rank fracture tensors
are made dimensionless by multiplying by the shear modulus of the
background medium (μ = ρVS0

2).

comparing the results of inversion to different resolution ma-
trices (with different numbers of eliminated singular values).
For the resolution matrices shown in this study, elimination
of 2 singular values showed the best match between the reso-
lution matrix and inversion results.

It should be noted however (as shown in the inversion re-
sults) that the results of the resolution matrix will not al-
ways be consistent with the inversion results. As mentioned
before, SVD is only controlled by the experiment geometry
(seismic survey design in this work) and the a priori infor-
mation about the elastic properties of the background unfrac-
tured rock. Therefore it is not affected by the quality of the ob-
served data (PP-reflection data in this work) that is used by the
inversion.

Inversion with synthetic data has shown that resolution
matrices, obtained from data with different geometries, should
be interpreted independently (Far 2011). This is because the
matrix of sensitivities changes as the geometry changes and
as a consequence the eigenvalues (eigenvectors) change. The
arrangement of eigenvectors could result in diagonal elements
in one resolution matrix that are bigger than in the other
resolution matrix. As an example, if in Fig. 9 (NAZ) we have
a higher value of β1111 than in Fig. 8 (WAZ), it does not mean
that β1111 will be resolved more successfully using NAZ data
rather than using WAZ.

Figure 8 suggests that α12, β1111 and β2222 will not be re-
solved accurately with inversion of WAZ PP data. Other com-
ponents of α and β should be inverted with higher accuracies
according to Fig. 8 (compare to Fig. 12). The significance of
this resolution matrix is further investigated in the discussion
following Figs 7–12.

Figure 9 suggests that α22, β1222 and β2222 will not be re-
solved accurately with inversion of this NAZ PP data. Com-
parison of Figs 8 and 9 suggests that when using these NAZ
data, α12 will be resolved better than α22, whereas for WAZ
data, α22 should be resolved better than α12. Another impor-
tant feature that one can see by comparing the two resolution
matrices is that according to Fig. 9, β1111 should be one of
the well-resolved unknowns but this is not the case for WAZ
data, as seen in Fig. 8.

R E S U L T S

Two inversion cases are considered, based on azimuthal cov-
erage (WAZ or NAZ). Four types of plots are shown for each
case: the first plot for each case shows the modelled reflection
coefficient. The second plot for each case shows inversion re-
sults for fracture tensors using noisy synthetic reflectivity data
and knowing the background VTI parameters exactly. The
third plot for each case shows the Monte Carlo simulation
results; this estimates the inversion errors due to uncertainty
in the background parameters. The fourth plot in each case
shows the results of Monte Carlo simulation for the predicted
direction of the fast vertical shear polarization, as described
in Helbig (1994) and Sayers (1998). These fast vertical shear-
wave polarization directions are calculated from 50 inversion
results of the fracture tensor components shown in the third
figures.

Inversion using WAZ seismic data

In this section, results are presented for inversion of α and
β using WAZ data for vertical fractures (with rotationally
invariant shear compliance). The signal-to-noise ratio of the
reflectivity data is 2. Theoretically this WAZ case should be
the easiest case for the inversion of fractured medium elastic
properties with monoclinic symmetry.

Figure 10 shows the synthetic WAZ reflectivity data.
Figure 11 shows that the components of the second-rank
fracture tensors α are inverted with high accuracy when we
use WAZ data. The errors in the fourth-rank tensor β are
about the same size but the components themselves are much
smaller, so their relative errors are much bigger.
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Figure 12 Monte Carlo simulation results using WAZ data with S/N = 2. Red lines show the actual values of the fracture tensor components
obtained by forward modelling and purple lines show the average values obtained from 50 inversions. The vertical axes show the values of
components of the fracture tensors obtained from inversion and the horizontal axes shows the number of inversions (μ = ρVS0

2).

Figure 13 Monte Carlo simulation results for calculation of the fast
shear-wave polarization direction from fracture tensor components,
WAZ. The vertical axes show the values obtained from the predicted
direction of fast shear polarization and the horizontal axes show the
number of inversions. Red bars show the actual values of the direction
of fast shear polarization and purple bars show the average values
obtained from 50 inversions.

Figure 12 shows that α is inverted with a reasonable accu-
racy. Some components of β however (β1111, β1222 and β2222)
are poorly resolved, as expected according to the resolution
matrix shown in Fig. 8, showing the usefulness of the resolu-
tion matrix for this case. There is an inconsistency between the
corresponding resolution matrix and these results and β1111

should have been resolved better than β2222, which is not
seen in the inversion results. This suggests careful use of the
resolution matrix for real world problems, after observing a
consistency in inversion of synthetics.

Figure 13 shows that the direction of the fast shear-wave
polarization, which is computed using the second-rank tensor,
is inverted with good accuracy as well.

Inversion using NAZ seismic data

Figure 14 shows the synthetic NAZ reflectivity data. In
this section, results of inversion for α and β using NAZ
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Figure 14 Reflection coefficient plots for the NAZ case showing noise-free reflectivity (left) and noisy reflectivity with S/N = 2 (right, used for
inversion), with 5 degree stacking intervals.

Figure 15 Inversion results of fracture tensors using synthetic reflec-
tivity data with S/N = 2 for narrow azimuth data; correlation coef-
ficient = 88.9%. Vertical axes show the actual normalized fracture
tensor values and horizontal axes show the inverted values of the ten-
sors. The components of the second- and fourth-rank fracture tensors
are made dimensionless by multiplying by the shear modulus of the
background medium (μ = ρVS0

2).

data with the assumption of having arbitrary sets of vertical
fractures (with rotationally invariant shear compliance) are
presented. The signal-to-noise ratio of the reflectivity data
is 2.

Figure 15 shows that, compared to WAZ analysis, NAZ
predictions of some components of the second- and fourth-

rank fracture tensors (α22 and β2222) start to deviate from
actual values. However, this degradation in accuracy is less
marked for some components than for others, because of the
selection of azimuths in this NAZ exercise.

As shown in Fig. 16, the first two components of α are
inverted with better accuracy compared to the other com-
ponents. As predicted by the resolution matrix (Fig. 9), α22

cannot be inverted successfully for this NAZ case. It should
be noted however that there is not full agreement between the
resolution matrix and the inversion results. For example, as
seen in Fig. 16, β1111 is not resolved accurately and also β1222

is poorly resolved compared to β2222.
Since some components of α could not be resolved accu-

rately, the direction of the fast shear- wave polarization could
not be inverted successfully (see Fig. 17).

Effect of uncertainty in background elastic properties

In order to further investigate the effect of uncertainty in the
VTI parameters, prediction errors of the components of α and
β were calculated using different degrees of uncertainty. Er-
rors were calculated from the differences between the mean
values obtained from 50 realizations of Monte Carlo simula-
tion and the actual values. In order for results and conclusions
to be less affected by random noise, higher S/N (S/N = 4) was
considered for the analysis. Figure 18 shows error plots in
predicting the second- and fourth-rank tensors, using WAZ
and NAZ data, as functions of degree of uncertainty in elastic
VTI parameters of the background medium (see Fig. 7). The
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Figure 16 Monte Carlo simulation results using NAZ data with S/N = 2. Red lines show the actual values of the fracture tensor components
obtained by forward modelling and purple lines show the average values obtained from 50 inversions (μ = ρVS0

2).

vertical axes show the prediction errors and the horizontal
axes show the degrees of uncertainty in the VTI parameters.
The actual values of the individual fracture tensor compo-
nents are shown at the top of each plot. The relative errors
are, in general, small for the components of α and large for
the components of β.

DISCUSS ION A N D C ON C L USI ON

A method for modelling reservoirs with arbitrary sets of
aligned vertical fractures is developed by inversion of syn-
thetic amplitude versus offset and azimuth PP-seismic data,
which requires no a priori knowledge about the orientation
of the fractures. Components of tensors that describe fracture

properties, for media with monoclinic or orthotropic symme-
try, can be inverted theoretically. Monoclinic and orthotropic
symmetries, which take into account layering and lamination
of rocks, should be used for anisotropy modelling in fractured
rocks.

Based on the inversion results of synthetic WAZ reflection
data, inversion of components of the second- and fourth-rank
fracture tensors α and β (depending on the uncertainties in
the a priori information about elastic properties of unfrac-
tured rock, which was assumed to vary from 0– 30%), have
almost the same absolute error. However, the inversion for
the components of the fourth-rank fracture tensor β has rel-
ative errors that are much larger (for this gas-shale case). For
NAZ data, the absolute error for α increases (see Figs 11, 15
and 18).
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Figure 17 Monte Carlo simulation results for calculation of the fast
shear-wave polarization direction from fracture tensor components,
NAZ. The vertical axes show the values obtained from the predicted
direction of fast shear polarization and the horizontal axes show the
number of inversions. Red bars show the actual values of the direction
of fast shear polarization and purple bars show the average values
obtained from 50 inversions.

In this work, a priori knowledge of the number and the
direction of fracture sets is not required. Inversion results
for the fracture tensors give the most compliant direction
in the fractured medium but nothing can be said about the
number of fracture sets and the direction of individual frac-
tures, without further assumptions or information. However,
if there is a priori information about the number of fracture
sets, one might be able to predict the fracture orientations.
For example if we know that there is only one set of per-
fectly aligned fractures in the reservoir, in theory their di-
rection can be inverted uniquely. Further conclusions can be
reached, using equations (13)–(19), if any of these special cases
apply.

Singular value decomposition (SVD) and resolution ma-
trix analysis are controlled by experimental geometry (seismic
survey design in this case) and a priori information (elastic
properties of the unfractured rock in this case). Thus, SVD
and/or resolution matrix can be used to determine the opti-
mal seismic survey design for inversion of fracture parameters.
Based on inversion results for narrow and wide azimuth sur-
vey geometries, high-quality azimuthally varying seismic data

Figure 18 Uncertainty analysis for the WAZ and NAZ cases, with 5 degree stacking intervals and S/N = 4. This figure shows error plots in
predicting the second- and fourth-rank tensors, as functions of degree of uncertainty in elastic VTI parameters of the background medium (see
Fig. 7). The vertical axes show the prediction errors and the horizontal axes show the degrees of uncertainty in the VTI parameters. The actual
values of the individual fracture tensor components are shown on the top of each plot.
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with a high-fold number is required to characterize fractures
reliably.
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APPENDIX A

SPECIAL CASES

Consider an isotropic background with one set of frac-
tures aligned with x1 (x2 along the symmetry axis); this is
the principal coordinate system. Substituting the background
compliance tensor (the first term on the right-hand side of
equation (6)) and the additional compliance tensor (the sec-
ond term on the right-hand side of equation (6), cf. equa-
tions (11) and (12) with cos ϕ = 1), in 2-index form, one
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obtains:

S = 1
E

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −ν −ν 0 0 0

−ν 1 −ν 0 0 0

−ν −ν 1 0 0 0

0 0 0 2(1 + ν) 0 0

0 0 0 0 2(1 + ν) 0

0 0 0 0 0 2(1 + ν)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0

0 α22 + β2222 0 0 0 0

0 0 0 0 0 0

0 0 0 α22 0 0

0 0 0 0 0 0

0 0 0 0 0 α22

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
E

−ν/E −ν/E 0 0 0

−ν/E
1
E

+ α22 + β2222 −ν/E 0 0 0

−ν/E −ν/E
1
E

0 0 0

0 0 0 α22 + 2(1 + ν)/E 0 0

0 0 0 0 2(1 + ν)/E 0

0 0 0 0 0 α22 + 2(1 + ν)/E

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A1)

which has HTI symmetry (Schoenberg and Sayers 1995). Sim-
ilarly, one can show that, if the background medium is polar
anisotropic, this one set of fractures results in orthotropic
symmetry. Similar methods prove that two orthogonal frac-
ture sets (equations (14) and (15)) in an isotropic or polar
anisotropic background medium result in orthotropic sym-
metry and that two non-orthogonal fracture sets (equations
(16) and (17)) in an isotropic or polar anisotropic background
medium result in monoclinic symmetry.

APPENDIX B

GENERALIZED ANISOTROPY PARAMETERS

In terms of the specific compliance matrices, anisotropy pa-
rameters are defined as (with the superscripts VTI for the back-
ground polar anisotropic medium implicit):

εx = ε + −C2
11(α11 + β1111) − C2

12(α22 + β2222) − 2C11C12β1122

2C33

εy = ε + −C2
12(α11 + β1111) − C2

11(α22 + β2222) − 2C11C12β1122

2C33

εz = −C2
13(α11 + β1111 + α22 + β2222 + 2β1122)

2C33

ε16 = −C66(2C11β1112 + 2C12β1222 + α12(C11 + C12))
C33

ε26 = −C66(2C12β1112 + 2C11β1222 + α12(C11 + C12))
C33

ε45 = −C2
45α12

C55

δx = δw + −C13(C11(α11 + β1111) + C12(α22 + β2222) + β1122(C11 + C12)) − 2C2
55α11

C33
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δy = δw + −C13(C12(α11 + β1111) + C11(α22 + β2222) + β1122(C11 + C12)) − 2C2
55α22

C33

δz = 2ε + C11C12(α11 + β1111 + α22 + β2222) − β1122(C11 + C12) − 2C2
66(α11 + α22 + 4β1122)

C33

γx = −C55α11

2
(B1)

γy = −C55α22

2

χz = −2C66C13(α12 + β1112 + β1222) − 2C2
55α12

C33

APPENDIX C

SENSITIV ITY EQUA T I ON S

Sensitivities in equation (25) are obtained as:

F11(θ, φ) = 1
μ

[
− C2

13

4C33
+

(
cos2 φ

(
−C11C13 + 2C2

55

C33

+ 4C55V̄2
S

V̄2
P

)
− C12C13 sin2 φ

C33

)
1
2

sin2 θ

+
(

−C2
11 cos4 φ

2C33
− (C11C12 + 2C2

66) cos2 φ sin2 φ

C33

− C2
12 sin4 φ

2C33

)
1
2

sin2 θ tan2 θ

]

F12(θ, φ) = 1
μ

[(
4C55V̄2

S

V̄2
P

− 2C2
55 + 2C13C66

C33

)
sin φ cos φ sin2 θ

+
(

− (C11 + C12)C66

C33

)
cos φ sin φ sin2 θ tan2 θ

]

F22(θ, φ) = 1
μ

[
− C2

13

4C33
+ 1

2

[
−C12C13 cos2 φ

C33

+
(

4C55V̄2
S

V̄2
P

+ −C11C13 − C2
55

C33

)]
sin2 φ sin2 θ

+ 1
2

(
− (C12 cos2 φ + C11 sin2 φ)2

2C33

− 2(C66 cos φ sin φ)2

C33

)
sin2 θ tan2 θ

]
(C1)

F1111(θ, φ) = 1
μ

[
− C2

13

4C33
+ 1

2

(
−C13(C12 sin2 φ + C11 cos2 φ)

C33

)

× sin2 θ − 1
2

(
1

2C33
(C11 cos2 φ + C12 sin2 φ)2

)

× sin2 θ tan2 θ

]

F1112(θ, φ) = 1
μ

[
− 2C13C66 cos φ sin φ

C33
sin2 θ

−
(

2C66(C11 cos2 φ + C12 sin2 φ)
C33

)

× cos φ sin φ sin2 θ tan2 θ

]

F1122(θ, φ) = 1
μ

[
− C2

13

2C33
+ 1

2

×
(

C13(C11 + C12)(2 cos2 φ − 1)
C33

)
sin2 θ

+ 1
2

(
−C11C12 + (3(C11 − C12)2) cos2 φ sin2 φ

C33

)

× sin2 θ tan2 θ

]

F1222(θ, φ) = 1
μ

[
− 2C66C13

C33
sin φ cos φ sin2 θ

+
(

−2C66(C11 sin2 φ + C12 cos2 φ)
C33

)

× sin φ cos φ sin2 θ tan2 θ

]
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F2222(θ, φ) = 1
μ

[
− C2

13

4C33
+ 1

2

×
(

−C13(C11 sin2 φ + C12 cos2 φ)
C33

)
sin2 θ

+1
2

(
− (C12 cos2 φ + C11 sin2 φ)2

2C33

)
sin2 θ tan2 θ

]

where V̄P = VP01+VP02
2 , V̄S = VS01+VS02

2 are the average proper-
ties of the upper and lower media and μ = ρVS0

2. For the
special case of an isotropic background, the sensitivity rela-
tions, fully linearized, simplify to:

F11(θ, φ) = 1
μ

[
− λ2

4M
− 1

2

(
cos2 φ

(
λ2 + 2λμ − 2μ2

M

)

+ λ2 sin2 φ

M

)
sin2 θ − 1

2

(
1
2

M cos4 φ

+ (λM + 2μ2) sin2 φ cos2 φ

M
+ λ2 sin4 φ

2M

)

× sin2 θ tan2 θ

]

F12(θ, φ) = 1
μ

[ (
−2μ(λ − μ)

M

)
sin φ cos φ sin2 θ

− 2μ(λ + μ)
M

cos φ sin φ sin2 θ tan2 θ

]

F22(θ, φ) = 1
μ

[
− λ2

4M
+ 1

2

((
−λ2 + 2λμ − 2μ2

M

)
sin2 φ

+ λ2

2M
(1 − 2 cos2 φ)

)
sin2 θ

+1
2

(
−λ2 cos4 φ

2M
− (λM + 2μ2) sin2 φ cos2 φ

M

− 1
2

M sin4 φ

)
sin2 θ tan2 θ

]
(C2)

F1111(θ, φ) = 1
μ

[
− λ2

4M
+ 1

2

(
−λ2 sin2 φ

M
− λ cos2 φ + λ2

2M

)

× sin2 θ + 1
2

(
−λ2 sin4 φ

2M

−1
2

M cos4 φ − λ sin2 φ cos2 φ

)
sin2 θ tan2 θ

]

F1112(θ, φ) = 1
μ

[
− 2μλ

M
cos φ sin φ sin2 θ −

(
2μλ sin2 φ

M

+ 2μ cos2 φ

)
cos φ sin φ × sin2 θ tan2 θ

]

F1122(θ, φ) = 1
μ

[
− λ2

2M
− 1

2

(
λ(λ + 2μ)

M

)
sin2 θ

+1
2

(
− (λ2 + M2 + 4μ2) sin2 φ cos2 φ

M

− λ(sin4 φ + cos4 φ)
)

sin2 θ tan2 θ

]

F1222(θ, φ) = 1
μ

[
− 2λμ

M
sin φ cos φ sin2 θ −

(
2λμ cos2 φ

M

+ 2μ sin2 φ

)
sin φ cos φ × sin2 θ tan2 θ

]

F2222(θ, φ) = 1
μ

[
− λ2

4M
+ 1

2

(
−λ sin2 φ + λ2

2M
(1 − 2 cos2 φ)

)

× sin2 θ + 1
2

(
− λ2 cos4 φ

2M
− 1

2
M sin4 φ

− λ sin2 φ cos2 φ

)
sin2 θ tan2 θ

]

where M = K + 4μ/3 = λ + 2μ is the longitudinal modulus
of the reservoir rock in the absence of fractures and K, μ and
λ are its bulk modulus, shear modulus and Lame parameter,
respectively. In fact, if the sensitivity factors F (of equation
(C1)) are fully linearized in the small VTI parameters of the
background medium, the result is equation (C2).

C© 2013 European Association of Geoscientists & Engineers, Geophysical Prospecting, 1–21




