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Figure 1. Partial drainage effect can be equivalent to 
a modified “Effective fluid modulus” 

Fluid substitution with Dynamic Fluid Modulus: facing the challenges in heterogeneous rocks  
Qiuliang Yao*, De-Hua Han, Fuyong Yan, Luanxiao Zhao, Rock Physics Lab, University of Houston   
 

Summary 

A new concept of frequency dependent effective fluid 
modulus is proposed to characterize the velocity dispersion 
caused by wave induced fluid flow (WIFF). It has a clear 
physical meaning and simple math expression, and can be 
directly used in Gassmann equation to predict the 
dispersion and attenuation. The new method is applied to a 
pore-crack system to predict squirt flow dispersion, either 
with single or multiple sets of cracks. Inverting the 
effective fluid modulus from measured ultrasonic data 
provides an indicator of the heterogeneity of the rock.  

Introduction 

By allowing the relative movement between solid frame 
and fluid, Biot (1956a, 1956b, 1962) first revealed wave 
induced fluid flow and the dispersion/attenuation associated 
with it. Since then, many more WIFF related 
dispersion/attenuation mechanisms have been proposed and 
formulated. Squirt flow models (O’Connell and Budiansky, 
1977; Dvorkin et al., 1995) focus on the fluid flow from 
softer cracks to stiffer round pores at grain scale. White 
(1975) studied fluid flow caused by compressibility 
heterogeneity between two immiscible fluids (patch 
saturation). Double porosity and dual permeability model 
(Berryman and Wang 1995; Pride and Berryman 2003a, 
2003b) provides a general framework to explicitly relate 
the internal fluid flow to bulk modulus dispersion, and can 
cover mesoscopic heterogeneities which are recently 
believed to account for the majority of the dispersion and 
attenuation observed in seismic frequency range. In their 
approach, many rock parameters, including drained and 
undrained bulk moduli, and Skempton’s coefficient, have 
been formulated as frequency dependent effective 
properties. We’re here seeking an alternative approach to 
use only one frequency dependent effective property: fluid 
modulus, which is directly related to the fluid flow, to 
model the non-Biot dispersion. 

Partial drainage and effective fluid modulus 

Gassmann equation predicts the fluid effect under 
undrained condition. “Undrained” means the boundary is 
closed so that no fluid allowed to flow into or out from a 
representative element volume (REV).  What happens if the 
boundary is not fully closed? It has been experimentally 
observed that bulk modulus drops if there is leak at the 
surface of the core sample (Hofmann, 2006). If part of the 
pore fluid is squeezed out of the REV, then the extra 
support by the fluid will be decreased. If there is additional 
fluid flowing into the REV, then the extra support is 
increased. We can introduce an “effective fluid modulus”  

 

to account for this partial drainage effect. A decreased 
support can be equivalent to a “still closed system but 
with reduced fluid modulus”, and vice versa, an 
increased support can be modeled as an increased fluid 
modulus. (Figure 1) 

 

At closed undrained condition, the pore volume change 
equals to fluid volume change, so that we can write 

ff

ff

p

pp

KdP
VdV

dP
VdV 1//

−==    (1) 

At partial drained condition, the pore volume change 
equals to the fluid volume change plus the flow amount q. 
We define the incoming flow as positive and outgoing 
flow as negative value. Note that under increasing 
external pressure, the pore volume change is negative. If 
one defines an effective fluid modulus Kf’ to correspond 
to the modified fluid volume change:  

p

p

fp

pp

f dP
Vq

KdP
VqdV

K
/1/)(

'
1

−=
+

−=
  (2) 

Then one can still use Gassmann with this Kf’, since the 
partial drainage effect is equivalently included in this 
modified fluid modulus. 

'//)( 0

2

f
drysat KK

KK
φφα

α
+−

+=
  (3) 

Internal fluid flow and bulk compressibility  

Next, we move on to consider the internal fluid flow 
caused by rock frame heterogeneity. In this case, the 
flow does not occur at the outer surface of the REV, but 
between the different parts of the rock within the REV. 
Part of the rock has an income flow and the other part 

DOI  http://dx.doi.org/10.1190/segam2013-1226.1© 2013 SEG
SEG Houston 2013 Annual Meeting Page 2851

D
ow

nl
oa

de
d 

10
/1

8/
13

 to
 1

29
.7

.2
47

.2
34

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/



Dynamic Fluid Modulus 

 
Figure 2. Frame stiffness heterogeneity causes pore 
pressure gradient and internal fluid flow. 

has an outgoing flow. There is a coupling between the 
incoming and outgoing flows. Actually this provides a 
constraint that we can use to compute the q. 

First we present a derivation of the maximum q, which 
represents the fluid flow amount at zero frequency.  

Consider a REV consisting of two type of pores with pore 
volume Vp1 and Vp2 respectively. Type 1 is stiffer with bulk 
modulus Kdry1 and type 2 is softer with bulk modulus Kdry2 
(Figure 2). Assuming under iso-stress condition a positive 
external pressure is applied to the REV, so that both types 
of pores receive the same confining pressure Pc.  

 

First, at the high frequency end, each type of pore is under 
undrained condition so that the pore pressure increases 
separately depending only on its own frame properties. 

22

2

11

1

// pp

p

pp

p
f VdV

dP
VdV

dP
K −=−=

  (4) 

Here the pore pressure increment in each phase is related to 
the corresponding confining pressure change dPc by 
(Thomsen, 1985; Skempton, 1954): 

 

c

f
f

d

f
p dP

K
K
K

K

K
dP

⎥
⎦

⎤
⎢
⎣

⎡
+−+

=
2

0

)( αφαφ

α

  (5) 

Now at zero frequency, fluid in amount of q flows from 
pore type 2 to pore type 1, so in pore type 1, we have  

1

1
1 '

p

p
fp V

qdV
KdP

−
−=

   (6) 

And for pore type 2 we have 

2

2
2 '

p

p
fp V

qdV
KdP

+
−=

   (7) 

Since they are equilibrated, dPp1’=dPp2’. Combining (4), 
we can obtain: 

21

12

/1/1
1

pp

pp

f VV
dPdP

K
q

+

−
=    (8) 

When Vp1>>Vp2, (8) can be approximated as 

)( 12
2

pp
f

p dPdP
K
V

q −=
   (9) 

Next, we will show how this fluid flow amount q can be 
related to the change of bulk compressibility of the rock. 
For better clarity, here we use the notation of fluid 
compressibility instead of modulus in our derivation. 

At high frequency, there is no fluid exchange between 
any pores. Each type of pore just behave as a completely 
closed system, the pore volume changes in type 1 and 
type 2 are 

111 pf PVV δβδ −=      (10) 

222 pf PVV δβδ −=     (11) 

So the total volume change is 

)( 221121 ppfH PVPVVVV δδβδδδ +−=+=  (12) 

Then we consider at low frequency (0Hz), there is q 
amount of fluid moved from V2 into V1, so we can write: 

pf PqVV δβδ )(' 11 +−=    (13) 

pf PqVV δβδ )(' 22 −−=    (14) 

And the total volume change is  

pfL PVVVVV δβδδδ )('' 2121 +−=+=   (15) 

Now let us look at the difference of the total volume 
change between low frequency and high frequency cases: 

[ ])()( 2211 ppppfHL PPVPPVVV δδδδβδδ −+−−=−   (16) 

When V1>>V2, the fluid flow will barely change the pore 
pressure in V1 thus we have the first term in right hand 
side vanished, and (16) can be approximated to: 

)( 22 ppfHL PPVVV δδβδδ −−=−   (17) 

Compared to (9), this is just the amount of fluid moved 
from V2 into V1. So we can conclude that under the 
condition that soft space is much smaller that stiff space, 
the same applied stress will cause a larger deformation at 
zero frequency than at high frequency due to the fluid 
flow from soft space into stiff space. The difference 
between them is approximately equal to the volume of 
the fluid flow from the soft space to stiff space. 

In this sense, we can view the zero frequency case as a 
partial drained condition from high frequency end. 
However, if we want to build the dispersion curve above 
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Dynamic Fluid Modulus 

 
Figure 3. At non-zero-frequency, rock is enhanced by 
an equivalent incoming fluid flow q’.  
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Figure 4. a) P wave dispersion modeled by Tang 
(2011). b) P wave dispersion modeled by effective 
fluid modulus, using same rock and fluid parameters.  

the well established Gassmann formulation which represent 
the zero frequency, we should treat it in a reversed way, 
that any non-zero frequency case is a partial drained 
condition based on zero frequency point, with an incoming 
flow in the amount of q’=-(qmax-q). Here qmax is defined by 
(8), or can be obtained from any specific modeling by set 
frequency f=0Hz (Figure 3). Based on this analysis, we can 
modify (2) to the following: 

p

p

ff dP
Vq

KK
/'1

"
1

−=
    (18) 

Now, for any non-zero frequency, we can just simply use 
the frequency dependent 1/Kf’ to replace the original 1/Kf in 
Gassmann equation, to fully and correctly characterize the 
velocity dispersion and attenuation. 

"//)( 0

2

f
drysat KK

KK
φφα

α
+−

+=
  (19) 

 

Example: Squirt flow in pore-crack system 

So the problem left with us now is to find out the amount of 
fluid flow q. Obviously, this q should be associated with 
the following factors: pressure gradient at boundary, local 
permeability at boundary, and fluid viscosity. Those in 
turns should be functions of frequency. Derivation of 
analytical expression of fluid flow q requires detailed 
information on the geometry of the heterogeneity. It 
normally involves Navier-Stokes equation with some 
assumption on the boundary conditions. Certain 
approximations are also required to obtain practical 
solutions. Nevertheless, due to the nature that all internal 
flows are diffusive like flows, it is possible to use a general 
format on internal fluid flow (Berryman, 2003): 

cc iiP
q

q
ωωωω /)/1( 2/1

max

−−
=

  (20) 

One special case for round pore plus thin cracks is 
described and formulated by Tang (2011).  
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The two dominant controlling parameters are crack 
density ε and crack aspect ratio γ. We use this expression 
of q to model the P wave dispersion in a crack-pore 
system (Figure 4b). All input rock and fluid parameters 
are the same as in Tang (2011). Compared to Tang’s 
original results (Figure 4a), our results predict all non-
zero-frequency velocities above the Gassmann value, 
due to the additional step of q’=qmax-q discussed before.  

 

Although we use the name “effective fluid modulus” to 
account for the dispersion and attenuation associated 
with WIFF (wave induced fluid flow), it must be point 
out that it is just an equivalent concept, and the 
dispersion and attenuation are actually not caused by 
changing property of the fluid. It is rather caused by the 
heterogeneity. This heterogeneity can either be on the 
solid frame (like crack-pore model or double porosity 
model), or on the fluid (patchy model). We can think the 
effective fluid modulus as an indicator of the 
heterogeneity. 

Furthermore, in real rock, multiple scales of 
heterogeneities can coexist either in discrete or 
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Dynamic Fluid Modulus 

Heterogeneity change with pressure
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Figure 6. Effective fluid modulii inverted from 
ultrasonic measurement data indicate the rock 
heterogeneities and response to pressure change.  
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Figure 5. A wide band of dispersion and attenuation is 
simulated by 7 sets of cracks.  

continuous spectrum. If each set of heterogeneity can be 
represented by a corresponding effective fluid modulus, 
then the total heterogeneity can be represented by 

p

pi

iff dP
Vq

KK
/'1

'
1 ∑−=

   (22) 

With this concept, in Figure 5, we simulate a rock with 7 
sets of cracks. Panel a shows the crack density and aspect 
ratio for each set of crack. In panel b we display both the 
real (red) and imaginary (blue) parts of the overall effective 
fluid modulus, along with the original fluid modulus of 
2.25Gpa, which represents the homogeneous rock. The 
multiple scales of heterogeneities in this simulation predict 
a wide spectrum of fast P-wave velocity dispersion and 
attenuation, which are often observed in real reservoir 
rocks (c and d). 

 

Invert Kf’ from ultrasonic data 

While broad band laboratory measurement data are still 
rarely available, we can use widely available ultrasonic 
data to invert the effective fluid moduli at the particular 
measurement frequency, and use them as indicators of 
heterogeneity, to get some insights to the composition, 
structure, and texture of the interested rock.  

In Figure 6, we use a subset of Han’s data (Han, 1986) to 
calculate the real part of the effective fluid moduli at 
differential pressure range of 5-50MPa. While an original 
value of 2.25GPa represents the no heterogeneity and no 
wave induced fluid flow, we can see all samples exhibit 
certain level of heterogeneity and the ultrasonic wave can 
generate certain amount of internal fluid flow within the 
sample. Increasing the differential pressure may slightly 
reduce the heterogeneity for most of the samples, especially 
for the two samples that has much large heterogeneity 
compared with the rest of the group. Better interpretation 
could be expected, should the effective fluid modulus data 

be analyzed together with other information, like 
porosity, permeability, cementation, and thin section 
images.   

 

Discussion 

The most important equation in the context is equation 
(18), which can also be written in the form of 
compressibility rather than bulk modulus: 

p

p

dP
Vq  /'

 ' −= ββ     (23) 

Obviously the second term can be viewed as a 
modification to the compressibility of the virgin pore 
fluid, caused by the internal fluid flow across a boundary 
separating the different phases inside a REV. It has the 
same dimension as the compressibility. The appearance 
of dPp seems making the whole term with an experiment 
parameter dependency. However, in the small strain 
linear domain, the fluid flow amount q’ is always 
proportional to the applied pressure dPc and the induced 
pore pressure increment dPp, therefore in any final 
analytical expression of the effective fluid 
compressibility, the dPp will not appear.  

  

Conclusion 

Through poroelesticity analysis, we suggest to use an 
effective fluid modulus to link the bulk modulus 
dispersion to internal fluid flow, so that Gassmann fluid 
substitution is extended into non-homogeneous rock at 
none zero frequencies. It is successfully applied to 
predict squirt flow dispersion. Multiple heterogeneities 
can be easily handled with the new method as 
demonstrated in our example.  
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