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Gassmann’s equation and fluid-saturation effects on seismic velocities

De-hua Han∗ and Michael L. Batzle‡

ABSTRACT

Gassmann’s (1951) equations commonly are used to
predict velocity changes resulting from different pore-
fluid saturations. However, the input parameters are of-
ten crudely estimated, and the resulting estimates of
fluid effects can be unrealistic. In rocks, parameters such
as porosity, density, and velocity are not independent,
and values must be kept consistent and constrained.
Otherwise, estimating fluid substitution can result in
substantial errors. We recast the Gassmann’s relations
in terms of a porosity-dependent normalized modu-
lus Kn and the fluid sensitivity in terms of a simpli-
fied gain function G. General Voigt-Reuss bounds and
critical porosity limits constrain the equations and pro-
vide upper and lower bounds of the fluid-saturation ef-
fect on bulk modulus. The “D” functions are simplified
modulus-porosity relations that are based on empirical
porosity-velocity trends. These functions are applicable
to fluid-substitution calculations and add important con-
straints on the results. More importantly, the simplified
Gassmann’s relations provide better physical insight into
the significance of each parameter. The estimated mod-
uli remain physical, the calculations are more stable, and
the results are more realistic.

INTRODUCTION

With improved resolution and cost efficiency, seismic tech-
nologies have gained a central position in reservoir delineation
and monitoring. Rock physics is an essential link connecting
seismic data to the presence of in situ hydrocarbons and to
reservoir characteristics. Modeling the effects of fluid on rock
velocity and density is a basic method used to ascertain the in-
fluence of pore fluids on seismic data. Gassmann’s (1951) equa-
tions are the relations most widely used to calculate seismic-
velocity changes resulting from different fluid saturations in
reservoirs. These equations predominate in the analysis of di-
rect hydrocarbon indicators (DHI), such as amplitude “bright
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spots,” amplitude variation with offset (AVO), and time-lapse
reservoir monitoring.

Despite the popularity of Gassmann’s equations and their
incorporation in most software packages for seismic reservoir
interpretation, important aspects of these equations have not
been thoroughly examined. Many of the basic assumptions are
invalid for common reservoir rocks and fluids. Previous efforts
to understand the operation and application of Gassmann’s
equations (Han, 1992; Mavko and Mukerji, 1995, Mavko et al.,
1998; Sengupta and Mavko, 1999) have focused mostly on in-
dividual parameter effects.

Recently, Nolen-Hoeksema (2000) made a detailed effort
to quantify changes in the pore-space modulus in response to
changes in fluid modulus. He introduced an effective fluid co-
efficient by differentiating “the bulk modulus of the fluid-filled
pore space Kpore.” He included two ratios to control the effec-
tive fluid coefficient: the ratio of fluid modulus to solid grain
modulus and the ratio of the Biot coefficient (1941) to porosity.
However, the physical meaning of the effective fluid coefficient
was not clarified. The fluid effect was in conjunction with other
rock parameters. The Voigt and Reuss models were introduced
to test the fluid effect. We need to extend his analysis to derive
both the mechanical bounds for porous media and the magni-
tude of the fluid effect.

Because the full implications of parameter interactions in
Gassmann’s equation are not well understood, in general prac-
tice, no constraints are placed on input parameters and there is
no quality control of the results. In particular, problems arise
in automated analysis in which results are usually taken at
face value. In this paper, we briefly list the assumptions for
Gassmann’s equation. We then derive mechanical bounds for
the input parameters that provide stricter constraints on cal-
culated results. The specific physical properties controlling the
fluid-saturation effect are then better understood.

Effect of fluid saturation on seismic properties

The seismic response of reservoirs is directly controlled by
compressional (P-wave) and shear (S-wave) velocities Vp and
Vs respectively along with densities. Figure 1a shows measured
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dry and water-saturated P- and S-wave velocities of sandstone
as a function of differential pressure. With water saturation,
P-wave velocity increases slightly, whereas S-wave velocity de-
creases slightly. However, neither P- nor S-wave velocity is the
best indicator of any fluid saturation effect because of the cou-
pling between P- and S-waves through the shear modulus and
bulk density:

Vp =
√

K + 4/3× µ
ρ

=
√

M

ρ
,

Vs =
√
µ

ρ
, (1)

where K is bulk modulus, µ is shear modulus, M is the com-
pressional modulus, and ρ is the bulk density. In contrast, if we
plot bulk and shear moduli as functions of pressure (Figure 1b),
the water-saturation effect becomes evident: (1) the bulk mod-
ulus increases about 50%, whereas (2) shear modulus remains
constant.

Clearly, bulk modulus is more sensitive to water saturation.
The bulk-volume deformation produced by a passing seismic
wave results in a pore-volume change and causes a pressure in-
crease in pore fluid (water). This pressure increase stiffens the
rock frame and causes an increase in bulk modulus. Shear de-
formation, however, does not produce a pore-volume change,
and consequently different fluids do not affect shear modulus.
Therefore, any fluid-saturation effect should correlate mainly
to a change in bulk modulus.

Gassmann’s equation

Gassmann’s equations provide a simple model for estimat-
ing the fluid-saturation effect on bulk modulus. We prefer the

Figure 1. (a) Measured P- and S-wave velocities on a sandstone sample at dry and water-saturated states, as a function of pressure.
(b) Bulk and shear moduli at dry and water-saturated states, as a function of pressure.

following Gassmann’s formulation because of its clear physical
meaning:

Ks = Kd +1Kd

1Kd = K0(1− Kd/K0)2

1− φ − Kd/K0 + φ × K0/K f
, (2)

µs = µd, (3)

where K0, K f , Kd, Ks, are the bulk moduli of the mineral grain,
fluid, dry rock, and saturated rock frame, respectively; φ is
porosity; and µs and µd are the saturated and dry-rock shear
moduli. 1Kd is an increment of bulk modulus as a result of
fluid saturation of dry rock. These equations indicate that fluid
in pores will affect bulk modulus but not shear modulus, which
is consistent with our earlier discussion. As Berryman (1999)
pointed out, a shear modulus that is independent of fluid sat-
uration results directly from the assumptions used to derive
Gassmann’s equation.

Numerous assumptions are involved in the derivation and
application of Gassmann’s equation:

1. the porous material is isotropic, elastic, monomineralic,
and homogeneous;

2. the pore space is well connected and in pressure equilib-
rium (zero-frequency limit);

3. the medium is a closed system with no pore-fluid move-
ment across boundaries;

4. there is no chemical interaction between fluids and rock
frame (shear modulus remains constant).

Many of these assumptions may not be valid for hydrocar-
bon reservoirs and depend on rock and fluid properties and
the in-situ conditions. For example, most rocks are anisotropic
to some degree, invalidating assumption (1). The work of
Brown and Korringa (1975) provides an explicit form for an
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anisotropic fluid substitution. Also, in seismic applications, it
is normally assumed that Gassmann’s equation works best for
seismic data at frequencies less than 100 Hz (Mavko et al.,
1998). Recently published laboratory data (Batzle et al., 2001)
show that acoustic waves may be dispersive in rocks within the
typical seismic band, invalidating assumption (2). In such cases,
seismic frequencies may still be too high for the application of
Gassmann’s equation. Pore pressures may not have enough
time to reach equilibrium, and the rock remains unrelaxed or
only partially relaxed. A Gassmann-type calculation provides
an estimate of relaxed velocity at zero frequency, which is a
lower bound of the fluid-saturation effect. Other similar vio-
lations of the assumptions often lead to the misapplication of
Gassmann’s equation. We will discuss this issue in detail in a
separate paper.

SIMPLIFIED GASSMANN’S EQUATION

Gassmann’s formulation is straightforward, and the simple
input parameters typically can be directly measured or as-
sumed. This simplicity is a primary reason for its wide applica-
tion in geophysical techniques. However, derivation of the rock
and fluid input parameters frequently remains ambiguous. As
a consequence, we frequently have little control over the valid-
ity of fluid-substitution calculations. We have made efforts to
clarify how the fluid-saturation effects are controlled by rock
parameters (Han, 1992). A simple graphic construction devel-
oped by Mavko and Mukerji (1995) introduces an “intercept”
porosity ϕR for a dry rock that is based on bulk porosity, dry-
bulk modulus, and solid-frame modulus. However, the physi-
cal meaning of the intercept porosity is not clear. Additionally,
multiple-parameter effects on Gassmann’s calculation remain
ambiguous. As a consequence, for application of Gassmann’s
calculation, generally we have not been able either to constrain
input parameters or to obtain quality control on the results. In
this section, we regroup Gassmann’s equation with combined
rock parameters. Under certain conditions, we can simplify this
equation further and clearly define the controlling parameters
for fluid-saturation effects.

The primary measure of a rock’s velocity sensitivity to fluid
saturation is its normalized modulus Kn, the ratio of dry bulk
modulus to that of the mineral:

Kn = Kd/K0. (4)

This function can be complicated and depends on rock texture
(porosity, clay content, pore geometry, grain size, grain con-
tact, cementation, mineral composition, and so on) and reser-
voir conditions (pressure and temperature). This Kn can be
determined either empirically or theoretically. For relatively
clean sandstone at high differential pressure (>20 MPa), the
complex dependence of Kn(x, y, z, . . .) can be simplified as a
function of porosity:

Kn(x, y, z, . . .) ∼= Kn(φ). (5)

From equation (2), the bulk-modulus increment 1Kd is then
equal to

1Kd = K0 × [1− Kn(φ)]2

1− φ − Kn(φ)+ φ × K0/K f
(6)

where (1− Kn(φ)) is the Biot parameter α (Biot, 1941). The
Biot parameter α is a relative measure of the difference be-
tween the mineral and dry-frame moduli. Furthermore, if we
apply the Voigt bound for Kn, and because usually K0À K f , it
is reasonable to assume that

0 ≤ 1− φ − Kn(φ)¿ φ × K0/K f (7)

for sedimentary rocks with high porosities (φ > 15%). There-
fore, the fluid-saturation effect of the Gassmann equation can
be simplified as

Ks = Kd +1Kd ≈ Kd + G(φ)× K f , (8)

where G(φ) is the simplified gain function defined as

G(φ) = [1− Kn(φ)]2

φ
= α2

φ
. (9)

Equation (8) is a simplified form of Gassmann’s equation, with
clear physical meaning: fluid-saturation effects on the bulk
modulus are proportional to a simplified gain function G(φ)
and the fluid modulus K f . The G(φ) in turn depends directly
on dry-rock properties: the normalized modulus and porosity.
In general, G(φ) is independent of fluid properties (ignoring
interactions between rock frame and pore fluid). Equation (9)
also shows that the normalized modulus or the Biot parameter
must be compatible with porosity. Otherwise, G(φ) can be un-
stable, particularly at small porosities. We need to know both
the simplified gain function of the dry rock frame and the pore-
fluid modulus to evaluate the fluid-saturation effect on seismic
properties.

Figure 2 shows that for sandstone samples (Han, 1986) at
high differential pressure (>20 MPa), the Ks of water-saturated
sands calculated using the simplified form is overestimated by
3% for porosities greater than 15%. These errors will decrease
significantly with a low fluid modulus (gas and light-oil satura-
tion). For low-porosity sands with high clay content, the sim-
plified Gassmann’s equation substantially overestimates water-
saturation effects.

This simplified Gassmann’s equation has a clear physical
meaning with systematic errors. This formulation can guide us
in applying Gassmann’s equation and in assessing the validity
of such calculations.

Figure 2. The simplified Gassmann’s formulation overestimates
the water-saturation effect on bulk modulus of sandstone sam-
ples (1986) at a differential pressure greater than 20 MPa. For
porous sands (porosity >15%), the error is around 3%.
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CONSTRAINTS ON GASSMANN’S EQUATION

The assumptions contained in Gassmann’s equation do not
constrain basic rock parameters. In equations (2), there are five
parameters, and usually the only applied constraint is that the
parameters are physically meaningful (>0). When one applies
Gassmann’s equation, one generally handles input parameters
as being completely independent. Values for K0 and K f are
estimated or assumed. Ks or Kd are calculated from Vp and Vs,
and density either comes from log data or is estimated along
withφ. Incompatible or mismatched data often generate wrong
or even unphysical results, such as a negative modulus. Unre-
alistic results can be hidden when one is performing a fluid
modulus substitution without examining Kd. In reality, only K0

and K f are completely independent. Ks, Kd, and φ are actu-
ally closely correlated. Bounds on Kd as a function of φ, for
example, constrain the bounds of Ks.

The Voigt bound

Assuming the porous medium is a Voigt material, which is a
high bound for Kd,

Kd = K0 × (1− φ). (10)

Substituting equation (10) into Gassmann’s equation (2) gives

1Kd min = φ × K f , (11)

and

Ks = Kd +1Kd min = K0 × (1− φ)+ φ × K f . (12)

Because this Voigt bound is the stiffest upper limit, the fluid-
saturation effect on bulk modulus here (1Kd min) will be a
minimum (Figure 3). This is the first constraint derived from
the Gassmann’s equation: The minimum of bulk modulus in-
crement resulting from fluid saturation is proportional to the
porosity of the rock (the simplified gain function G(φ)=φ) and
the modulus of the pore fluid.

We know that fluid modulus is a positive value, but K f ¿ K0.
Therefore, from equations (10) and (11),

K0 ≥ Ks ≥ Kd. (13)

The Reuss bound

The low modulus bound for porous media is the Reuss
bound:

1
KR
= (1− φ)

K0
+ φ

K f
, (14)

KR = K0 × K f

(1− φ)× K f + φ × K0
. (15)

For completely empty (dry) rocks, the fluid modulus K f is equal
to zero. Thus, both the Reuss bound and the normalized mod-
ulus (KnR) for a dry rock in this case equals zero (for nonzero
porosity):

KnR(φ) = Kd/K0 = 0. (16)

Substituting equation (16) into the Gassmann’s equation (2),
we find the fluid-saturation effect on bulk modulus when the

frame is at this lower bound:

1Kd max = K0

1− φ + φ × K0/K f
= KR. (17)

Note that the modulus increment1K from dry to fluid satura-
tion is equal to the Reuss bound (equation 15):

Ks = Kd +1Kd max = KR. (18)

Again, Gassmann’s equation is consistent with the dry and
fluid-saturated Reuss bounds. The 1Kd max is the maximum
fluid-saturation effect predicted from Gassmann’s equation
(Figure 3). Physically, with the weakest frame, fluids have a
maximum effect. It is interesting that for the Voigt bound, the
fluid-saturation effect on the modulus increases with increasing
porosity. This is opposite of the fluid-saturation effect on the
modulus for the Reuss bound, which decreases with increas-
ing porosity. At a porosity of 100%, both the Voigt and Reuss
bounds in the Gassmann’s calculation show that the fluid effect
on modulus equals the fluid modulus.

In many reported applications, these general bound values
have often been ignored. For example, a Ks calculated directly
from log data (Vp, Vs, and bulk density) may be lower than
the Reuss bound. This results in a negative value for Kd. Such
bounds of the fluid effect on bulk modulus provide constraints
for the input and output parameters of Gassmann’s calculation.

Critical porosity

Reservoir rocks in general are far from the Voigt and Reuss
bounds, as Figure 4 shows for sandstones. Dolomite with vuggy
pores may approach the Voigt bound, and highly fractured
rocks may approach the Reuss bound. However, there is a
great difference between these idealized bounds and most real
rocks: The bounds shown in Figure 4 do not limit most ob-
served, naturally occurring porosity. The vast majority of rocks
have an upper limit to their porosity, usually termed “criti-
cal porosity,” φc (Yin, 1992; Nur et al., 1995). At this high-
porosity limit, we reach the threshold of grain contacts (Han,
1986). This φc modifies the Voigt model (Figure 3) to provide
tighter constraints for dry and fluid-saturated bulk moduli for
sands. This triangle physically correlates with both the Voigt
and Reuss bounds. The fluid-saturation effect on modulus is
consistent with the Voigt triangle: It increase with increasing
porosity and is limited by the Reuss bound at the critical poros-
ity. The modified Voigt triangle provides a linear formulation
and a graphic procedure for Gassmann’s calculation: the fluid
saturation effect on bulk modulus is proportional to normal-
ized porosity and the maximum fluid saturation effect on bulk
modulus (Reuss bound) at the critical porosity (Figure 3):

1Kd = φ/φc × KRc. (19)

This is consistent with the earlier work done by Mavko and
Mukerji (1995), with a slightly different physical formulation.

For typical sandstones, the critical porosityφc is around 40%.
Thus, we can also generate a simplified numerical formula of
the normalized modulus Kn for the modified Voigt model:

Kn(φ) = 1− φ/φc = 1− 2.5× φ. (20)
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Using this in Gassmann’s equation (6) yields the fluid-
saturation effect

1Kd = 6.25× φ × K0

1.5+ K0/K f
< 6.25× φ × K f . (21)

EMPIRICAL MODEL FOR NORMALIZED MODULUS Kn

Extending our empirical approach to a first order, both P-
and S-wave velocities can correlate linearly with porosity at
high differential pressure (Pd = 40 MPa). For dry, clean sands
(Han, 1986),

Vp = 5.97− 7.85× φ km/s,
(22)

Vs = 4.03− 5.85× φ km/s,

assuming that the density of these sands is equal to

ρd = 2.65× (1− φ) g/cm3. (23)

Because the modulus is the product of the density and the
square of the velocity, we obtain an equation that is cubic in
terms of porosity. The bulk modulus can be derived as

Kd = (1− A× φ + B× φ2 − C × φ3)× K0, (24)

where A= 3.206; B= 3.349; C= 1.143. Equation (24) can be
further simplified if porosity is not too high (φ < 30%):

Kd = (1− D × φ)2 × K0, (25)

where D for clean sandstone is equal to 1.52. This includes
an empirical expression of the normalized modulus as a direct
dependence on porosity and the “D” parameter. Table 1 and
Figure 5 show empirical relations generated from dry velocity
data of relatively clean rocks. The parameter D has been de-
rived based on approximate linear velocity-porosity relations.
D represents, in the first order, the correlation of porosity to
bulk modulus for relatively clean sandstones and clastic sedi-
ments. It is related to rock texture, pressure, and fluid satura-
tion and should be calibrated for local reservoir conditions. For
shaly sands, the clay effect on the modulus should be corrected
before the D parameter can be derived. For consolidated rock

Figure 3. Illustration of both the Voigt high and Reuss low
bounds for dry rock, fluid-saturated rock, and bounds of pre-
dicted fluid-saturation effect by the Gassmann’s equation.

at high differential-pressure (>20 MPa) conditions, D ranges
from about 1.45 to slightly more than 2.0, depending on con-
solidation of the rock.

By inserting this D function into equation (9) we find

G(φ) = D2 × φ × (2− D × φ)2. (26)

Figure 6 shows the modified Voigt model based on critical
porosity and the D function model, with D= 2. This simple
calculation provides a useful quality-control tool to check any
Gassmann-type calculation for sandstones.

SOLID MINERAL BULK MODULUS

As we mentioned previously, the normalized modulus Kn

controls the fluid saturation effect, rather than K0 or Kd in-
dividually. The mineral modulus K0 is as important as is Kd.
The K0 is a mineral property. However, in most applications of
Gassmann’s equation, only Kd is measured. Properties of the
mineral modulus K0 are often poorly understood and oversim-
plified. K0 is the modulus of the solid material that includes
grains, cements, and pore fillings. If clays or other minerals are
present with complicated distributions and structures, K0 can
vary over a wide range. Unfortunately, few measurements of
K0 have been made for sedimentary rocks (Coyner, 1984), and
the moduli of clays are a particular problem (Wang et al., 1998;
Katahara, 1996). Measured data (Coyner, 1984) show that at

Figure 4. A typical velocity distribution for clean and shaly
sands, weakly cemented sands, fractured rocks, and suspen-
sions, in comparison with the Voigt and Reuss bounds and crit-
ical porosity (modified from Marion, 1990).
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high pressures (>20 MPa), K0 for sandstone samples ranges
from 33 to 39 MPa. K0 is not a constant and can increase by
more than 10% with increasing effective pressure. Clearly, min-
eral modulus K0 can vary across a wide range, depending on
mineral composition, distribution, and in situ conditions.

Figure 5. Normalized modulus based on Voigt and Reuss
bounds and empirical D functions for different rocks (See
Table 1).

Figure 6. Comparison of the Gassmann and simplified
Gassmann calculation for brine-saturation effect (brine modu-
lus K f = 2.8 GPa) for the modified Voigt bound, with ϕc= 40%
and D= 2 function model.

Table 1. Compiled empirical relations and relative D-por. models for different rocks.∗∗

Kd = (1− A× φ + B× φ2 − C × φ3)× K0
V-emp. relation Kd = (1− D × φ)2 × K0

Rock type Pe = 40 MPa A B C D

Dry shaly sandstone Vp = 5.41− 6.35× φ 3.053 3.070 1.016 1.450
Vs = 3.57− 4.57× φ (K0 = 32.5 GPa)

Dry clean sandstone Vp = 5.97− 7.85× φ 3.206 3.349 1.143 1.523
Vs = 4.03− 5.85× φ (K0 = 37.0 GPa)

Silicate clastic Vp = 5.81− 9.42× φ 3.283 3.284 1.014 1.584
(Castagna et al., 1985) Vs = 3.89− 7.07× φ (K0 = 36.0 GPa)
Dry vuggy limestone Vp = 6.47− 5.84× φ 2.815 2.639 0.824 1.340

Vs = 3.39− 3.03× φ (K0 = 71.9 GPa)
Dry limestone Vp = 6.19− 9.80× φ 4.244 5.820 2.605 1.970

Vs = 3.20− 4.90× φ (K0 = 66.8 GPa)
Dry dolomite Vp = 6.78− 9.80× φ 3.578 4.020 1.358 1.705

Vs = 3.72− 5.20× φ (K0 = 94.4 GPa)

*Kd units are V-emp. relation.

Figure 7 shows the influence of K0 on Gassmann’s calcu-
lation. This case uses a dry bulk modulus calculated with a
mineral modulus of 40 GPa and D= 2 in the D function. The
water-saturation effect was calculated for three mineral mod-
uli, of 65, 40, and 32 GPa, and a water modulus of 2.8 GPa.

Figure 7. Different mineral-frame bulk-modulus effects on cal-
culated bulk modulus with water saturation (brine modulus:
K f = 2.8 GPa) and D= 2 function model.

Figure 8. Fluid-saturation effect on calculated bulk modulus,
with typical water, oil, and gas saturation and D= 2 function
model.



404 Han and Batzle

Results show that for the same Kd and K f , the bulk-modulus
increment 1Kd resulting from fluid saturation increases with
increasing mineral modulus K0. Errors resulting from uncer-
tainty of K0 can be significant for low-porosity rocks.

Because of a lack of measurements on mineral moduli, of-
ten we must use measured velocity-porosity-clay-content rela-
tionships for shaly sandstone (Han, 1986) to estimate the min-
eral modulus. Assuming zero porosity and a grain density of
2.65 g/cm3, we can derive mineral bulk and shear moduli from
measured P- and S-wave velocities. The results are shown in
Table 2.

For relatively clean sandstones (with clay content of a few
percent), the mineral bulk modulus (K0) typically is 39 GPa,
which is a stable value for differential pressures higher than
20 MPa. Mineral shear modulus (µ0) is around 33 GPa, which
is significantly less than the 44 GPa for a pure-quartz aggregate.
Shear modulus is more sensitive to differential pressure and to
clay content. For shaly sandstones, the mineral bulk modulus
decreases about 1.7 GPa per 10% increment of clay content.
Derived mineral bulk modulus can be used for the Gassmann’s
calculation, if there are no directly measured data or reliable
models for calculation.

Lithology detection is often a goal of seismic interpretation.
In modeling the seismic response, we often face the challenge
of how to separate the fluid’s influence from the lithology ef-
fect. To estimate this effect, we need to perform “lithology
substitution” by using different values for the simplified gain
function in Gassmann’s equation:

1K21(≤) ≈ [G2(φ)− G1(φ)]× K f . (27)

We should incorporate this factor into the fluid-substitution
scheme. However, this process is not commonly performed and
is still poorly understood.

FLUID MODULUS AND FLUID-SATURATION EFFECTS

The fluid modulus is another key independent parameter in
Gassmann’s equation. Because identification of fluid types is
often the primary goal of a seismic program, fluid properties
are of critical significance. However, fluid properties are often
oversimplified in seismic applications. Although complex, fluid
properties are systematic. Oil properties depend on density (or
API gravity), gas-oil ratio (GOR), gas gravity, pressure, and
temperature conditions. Under different conditions, the fluid
phase and its seismic properties can vary dramatically (Han and
Batzle, 2000a, b; Batzle and Wang, 1992). As we mentioned pre-
viously, Gassmann’s prediction is approximately proportional
to the fluid bulk modulus K f , with different gain functions.
Thus, the stiffer the pore fluid, the higher the bulk modulus.

Table 2. Grain bulk and shear modulus for shaly sands; min-
eral modulus derived from empirical velocities relation of shaly
sandstones. C is the fractional clay content.

C = 0 C = 0.1 C = 0.2

Pd K0 µ0 K0 µ0 K0 µ0
(MPa) (GPa) (GPa) (GPa) (GPa) (GPa) (GPa)

40 39.03 32.83 37.27 29.40 35.51 26.16
30 39.08 31.91 37.26 28.56 35.44 25.40
20 39.27 30.45 37.30 27.29 35.35 24.30
10 38.74 26.46 36.72 25.73 34.72 22.94

Fluid substitution is a primary application of Gassmann’s
equation. With a change of fluid saturation from fluid 1 to fluid
2, the bulk modulus increment is equal to

1K21(≤) ≈ G(φ)× (K f 2 − K f 1), (28)

where K f 1 and K f 2 are the moduli of fluids 1 and 2, respec-
tively, and 1K21 represents the change in increment caused
by substituting fluid 2 for fluid 1. Equation (28) uses the fact
that the simplified gain function G(φ) of the dry-rock frame
remains constant as the fluid modulus changes (this may not
be true for some real rocks). The fluid-substitution effect on
bulk modulus is simply proportional to the difference in fluid
bulk moduli. This form of fluid substitution is similar to that
derived by Mavko et al. (1998):

Ks1

K0 − Ks1
− K f 1

φ × (K0 − K f 1)
= Ks2

K0 − Ks2

− K f 2

φ × (K0 − K f 2)
= Kd

K0 − Kd
. (29)

Note that the fluid-substitution effect calculated through equa-
tion (29) is based on dry-frame properties. Deriving the dry
modulus often helps us to examine validity of input parame-
ters and output results of Gassmann’s calculation.

If we know the simplified gain function for a rock formation,
we can estimate the fluid-substitution effect without knowing
shear modulus:

ρ2V2
p2 ≈ ρ1V2

p1 + G(φ)× (K f 2 − K f 1), (30)

where ρ1, ρ2, Vp1 and Vp2 are the densities and velocities of
rock saturated, respectively, with fluid 1 and fluid 2. Both
equations (28) and (30) are direct results from simplified
Gassmann’s equation (equation 8). Mavko et al. (1995) have
suggested a similar method.

In Figure 8, we show the typical fluid-modulus effect on the
saturated bulk modulus Ks. Even at a modest porosity of 15%,
changes can be substantial. At in situ conditions, pore fluids are
often multiphase mixtures. A dynamic fluid modulus may also
depend on fluid mobility, fluid distribution, rock compressibil-
ity, and seismic wavelength.

Another approach is to use the P-wave modulus (M) to re-
place bulk modulus in Gassmann’s equation. This works rea-
sonably well for sandstones. The validity of this simplification
results from the approximate equivalence of the ratio of dry-
frame bulk and shear modulus (Kd/µd) to the ratio of mineral
(quartz) bulk and shear modulus (K0/µ0).

ESTIMATING DRY BULK MODULUS

To estimate saturation effects on rocks practically, we need
to obtain the dry bulk modulus. From Gassmann’s equation,
we derive Kd from fluid-saturated Ks and fluid-saturation effect
1Ks:

Kd = Ks −1Ks = Ks − K0 × (1− Ks/K0)2

φ × K0/K f + Ks/K0 − 1− φ ,
(31)

where the fluid-saturation effect 1Ks is based on measured
fluid-saturated modulus Ks and results in a slightly different
formulation for 1Kd in equation (2). If we reformulate 1Ks
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with the Reuss bound KR of the rock with saturated fluid,

1Ks = KR× (K0 − Ks)2

K 2
0 + Ks × KR− 2× K0 × KR

≤ KR. (32)

Again, the Reuss bound provides the maximum fluid-
saturation effect.

CONCLUSIONS

Gassmann’s equations are used widely to calculate fluid-
substitution effects. Unfortunately, the underlying assumptions
are often violated, and the validity of the resulting calculations
is unknown. Several factors can be incorporated into the analy-
sis to make the results more physically meaningful and reliable.

1) A simplified form of Gassmann’s equation clarifies the
physical control of fluid-saturation effects on rock bulk
modulus, through the simplified gain function of dry rock
(dependent on the normalized dry bulk modulus and
porosity) and fluid modulus. Rock parameters, such as
normalized dry bulk modulus and porosity, are strongly
correlated, which effectively reduces the number of free
parameters.

2) The dry and fluid-saturated Voigt-Reuss bounds of bulk
modulus provide physical limitations on Gassmann’s
equation. The minimum increment of bulk modulus re-
sulting from fluid saturation, consistent with the Voigt
bound, is proportional to porosity and fluid modulus. The
maximum increment of bulk modulus with changing sat-
uration, consistent with the Reuss bound, is equivalent
to the Reuss bound of fluid-saturated rock itself. This is
because the Reuss bound of dry rock is zero.

3) The normalized bulk modulus can be a complicated
function of rock textures and in situ conditions, which
may lead to wide variations in the results of apply-
ing Gassmann’s equation. However, simplified modulus-
porosity trends can be incorporated, resulting in simple
polynomial dependence on porosity in sandstones. Fluid-
substitution effects are then a straightforward function of
porosity and the difference in fluid moduli.

4) The calculated dry-frame modulus or mineral modulus
can be in substantial error if rock properties are not con-
sistent or assumptions are violated.

Although these relationships have been applied for many
years, considerable basic research still needs to be done on
many of the controlling factors. Fundamental components,
such as the mineral moduli (particularly for clays), are rarely
measured. The exact character of the pore-volume modulus
(Brown and Korringa, 1975) is unknown, and the validity of re-
placing it with the mineral modulus is ambiguous. The influence
of mixed fluid phases and fluid mobility is also not incorporated.
Additionally, theory applies strictly to the low-frequency range,
thereby permitting no frequency dependence. With increasing
application of seismic data to extracting and predicting reser-
voir and fluid properties, we will need more constrained and
tested forms of Gassmann’s relations and other porous-media
theories.
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